
Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU programming module

Week 4 : Introduction to CUDA

Lecture 8 - October 3rd 2024

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

What we learnt in the previous lecture

● We reminded ourselves of the GPUs
memory layout

● We discussed about data locality and the
importance of caching

● We understood the coalesced memory
data access pattern

2

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Today

Today we will learn about :
● Shared memory
● Atomic operations
● The default CUDA stream

3

Shared memory

4

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory

5Image source [1]

Shared memory works differently from DRAM :

● From the hardware perspective :
○ Resource per SM

● From the software software perspective:
○ Resource per block of threads

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory

6Image source [1]

Shared memory works differently from DRAM :

● From the hardware perspective :
○ Resource per SM

● From the software software perspective:
○ Resource per block of threads

Shared memory is useful :

● Allows inter-thread communication within a thread
block

● Allows caching of data to reduce redundant global
memory accesses

● Can help improve global memory access patterns

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory

7

● Shared memory can be defined by using the __shared__ qualifier
○ e.g. __shared__ int var;

● Declared in CUDA kernel :
○ Can be static or dynamic

● Allocated on a per thread block basis :
○ Any variable declared as __shared__ will be accessible by all threads in a

block
○ Variable i not visible by threads in other blocks

● It is limited in size:
○ The maximum varies depending on the device architecture.

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Static shared memory

8

● Shared memory is allocated
within the kernel

__global__ void my_kernel(float *result) {

 // The size of the shared variable is known at

compile time :

 __shared__ float shared_var[N];

 for (int i = threadIdx.x; I < N; i++) {

 shared_var[i] = ...;

 }

 __syncthreads();

 for (int i = threadIdx.x; I < N; i++) {

 result = Do something with shared_var[i]

 }

 }

}

int main(void) {

 ...

 // The kernel launch is as usual

 my_kernel<<gridDim,blockDim>>(result);

 ...

 return 0;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Static shared memory

9

● Shared memory is allocated
within the kernel

● If the size is known at compile
time, it is declared with that size
directly in the kernel

__global__ void my_kernel(float *result) {

 // The size of the shared variable is known at

compile time :

 __shared__ float shared_var[N];

 for (int i = threadIdx.x; I < N; i++) {

 shared_var[i] = ...;

 }

 __syncthreads();

 for (int i = threadIdx.x; I < N; i++) {

 result = Do something with shared_var[i]

 }

 }

}

int main(void) {

 ...

 // The kernel launch is as usual

 my_kernel<<gridDim,blockDim>>(result);

 ...

 return 0;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Static shared memory

10

● Shared memory is allocated
within the kernel

● If the size is known at compile
time, it is declared with that size
directly in the kernel

● Call to __syncthreads() is usually
needed if results computed with
other threads are needed

__global__ void my_kernel(float *result) {

 // The size of the shared variable is known at

compile time :

 __shared__ float shared_var[N];

 for (int i = threadIdx.x; I < N; i++) {

 shared_var[i] = ...;

 }

 __syncthreads();

 for (int i = threadIdx.x; I < N; i++) {

 result = Do something with shared_var[i]

 }

 }

}

int main(void) {

 ...

 // The kernel launch is as usual

 my_kernel<<gridDim,blockDim>>(result);

 ...

 return 0;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Dynamic shared memory

11

● If the size is only known at run
time shared memory can be
allocated dynamically

__global__ void my_kernel(float *result) {

 // The size of the shared variable is not known at

compile time :

 extern __shared__ float var_sh[];

 for (int i = threadIdx.x; I < N; i++) {

 shared_var[i] = ...;

 }

 __syncthreads();

 for (int i = threadIdx.x; I < N; i++) {

 result = Do something with shared_var[i]

 }

}

int main(void) {

 ...

 // The kernel launch has an additional parameter

 my_kernel<<gridDim,blockDim,N*sizeof(float)>>(result);

 ...

 return 0;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Dynamic shared memory

12

● If the size is only known at run
time shared memory can be
allocated dynamically :
○ Declared within the kernel

○ Declaration requires the
keyword extern

__global__ void my_kernel(float *result) {

 // The size of the shared variable is not known at

compile time :

 extern __shared__ float var_sh[];

 for (int i = threadIdx.x; I < N; i++) {

 shared_var[i] = ...;

 }

 __syncthreads();

 for (int i = threadIdx.x; I < N; i++) {

 result = Do something with shared_var[i]

 }

}

int main(void) {

 ...

 // The kernel launch has an additional parameter

 my_kernel<<gridDim,blockDim,N*sizeof(float)>>(result);

 ...

 return 0;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Dynamic shared memory

13

● If the size is only known at run
time shared memory can be
allocated dynamically :
○ Declared within the kernel

○ Declaration requires the
keyword extern

● Size must be known on the host
and should be passed as an
additional kernel call argument

__global__ void my_kernel(float *result) {

 // The size of the shared variable is not known at

compile time :

 extern __shared__ float var_sh[];

 for (int i = threadIdx.x; I < N; i++) {

 shared_var[i] = ...;

 }

 __syncthreads();

 for (int i = threadIdx.x; I < N; i++) {

 result = Do something with shared_var[i]

 }

}

int main(void) {

 ...

 // The kernel launch has an additional parameter

 my_kernel<<gridDim,blockDim,N*sizeof(float)>>(result);

 ...

 return 0;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory : A practical example

14

Lets understand how shared memory works by trying to apply a 1-D stencil to a 1-D array!
● Each output element will be the sum of input elements within a predefined radius :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18 36

We assume that radius = 1 for this example

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory : A practical example

15

Lets understand how shared memory works by trying to apply a 1-D stencil to a 1-D array!
● Each output element will be the sum of input elements within a predefined radius :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18 36

What will be the value of this element
if we apply the stencil?

Question

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory : A practical example

16

Lets understand how shared memory works by trying to apply a 1-D stencil to a 1-D array!
● Each output element will be the sum of input elements within a predefined radius :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18 24 36

● What happens to these “boundary” elements? (these are equal to the stencil radius)

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory : A practical example

17

Lets understand how shared memory works by trying to apply a 1-D stencil to a 1-D array!
● Each output element will be the sum of input elements within a predefined radius :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 18 24 36 15

● They do not change when applying the stencil

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory : A practical example

18

Why is this a problem that benefits from using shared memory?

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory : A practical example

19

Why is this a problem that benefits from using shared memory?
● Input elements are read several times!!

○ This depends on the radius size
○ e.g for radius = 2, element 5 is read 5 times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

1-D stencil kernel

20

● Shared memory is allocated
per-block :
○ Threads in the same block

can access the shared
variable

○ Threads from different
blocks cannot

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS; offset <= RADIUS; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

1-D stencil kernel

21

● In order to properly apply the
stencil to the boundary elements
we have to have access to some
additional edge elements :
○ These are equal to the

radius of the stencil

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS; offset <= RADIUS; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}
If these are the elements that the threads in a block are going to apply the stencil on, the threads should also
have access to a “halo” of elements left and right equal to the stencil radius

Left halo Right halo

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

1-D stencil kernel

22

● Input elements are read into
shared memory

e.g. if BLOCK_SIZE = 8 & stencil radius = 2

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS; offset <= RADIUS; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

1-D stencil kernel

23

● Input elements are read into
shared memory

e.g. if BLOCK_SIZE = 8 & stencil radius = 2

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS; offset <= RADIUS; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

Lets try this out!
You can copy this code into a .cu file and try to
run it.
Remember: To compile first set up your
environment and then :
nvcc myscript.cu -o myscript
./myscript

Exercise

What do you observe??

https://docs.google.com/document/d/1Mwr95CQMWr5JGhmXO4v-KEmESVZUttuL1Gzwxasrhig/edit?usp=sharing
https://docs.google.com/document/d/1h6WBZaW8G2ANqCepPqTBIvUcj9eHo6JjxCjn1LAGDmg/edit?usp=sharing

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

1-D stencil kernel

24

● Input elements are read into
shared memory

e.g. if BLOCK_SIZE = 8 & stencil radius = 2

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS; offset <= RADIUS; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

Lets try this out!
You can copy this code into a .cu file and try to
run it.
Remember: To compile first set up your
environment and then :
nvcc myscript.cu -o myscript
./myscript

Exercise

Data race !!!

https://docs.google.com/document/d/1Mwr95CQMWr5JGhmXO4v-KEmESVZUttuL1Gzwxasrhig/edit?usp=sharing
https://docs.google.com/document/d/1h6WBZaW8G2ANqCepPqTBIvUcj9eHo6JjxCjn1LAGDmg/edit?usp=sharing

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Shared memory and synchronization
● Threads in a block don't necessarily execute the same instruction simultaneously!

○ Only threads in the same warp execute instructions simultaneously
● The program does not know a priori the desired way of how threads should execute

instructions
○ Outcome depends on timing of the different threads
○ In our example there were cases where the stencil was applied before the values were

loaded into shared memory
● To address this race condition we can use the __syncthreads() primitive:

○ synchronizes all threads within a block

25

Let's try and add the _syncthreads() primitive
and see what we get!

Exercise

Atomic operations

26

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Atomic operations
● Useful when modifying the same value in memory from different

threads :
○ Are used to prevent race conditions in multithreaded

applications
○ Read-modify-write cannot be interrupted

■ Appear to be one operation
● Atomics are special hardware instruction on NVIDIA GPUs e.g.:

○ atomicAdd/Sub (Add or subtract)
■ e.g. syntax : atomicAdd(int* address, int val);

○ atomicMax/Min (Find max or min)
○ atomicExch/CAS (Swap or conditionally swap variables)

■ e.g. syntax : atomicCAS (&addr, compare, value)
○ atomicAnd/Or/Xor (bitwise operations)

○ …

27

A[i]

SumA[i]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Adding elements in a vector
Let’s start by writing a CUDA kernel that calculated the sum of the elements
of a vector :

__global__ void add_array(float* A, float* sum) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < N) {
 *sum +=A[idx];
 }
}

● There are 3 instructions that will be executed :
○ Load the value of A for each thread
○ Read the value of sum
○ Modify the value of sum

28

A[i]

SumA[i]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Adding elements in a vector
Let’s start by writing a CUDA kernel that calculated the sum of the elements
of a vector :

__global__ void add_array(float* A, float* sum) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < N) {
 *sum +=A[idx];
 }
}

● There are 3 instructions that will be executed :
○ Load the value of A for each thread
○ Read the value of sum
○ Modify the value of sum

29

A[i]

SumA[i]

Lets try this out!
You can copy this code into a .cu file
and try to run it.
Remember: To compile first set up
your environment and then :
nvcc myscript.cu -o myscript
./myscript

Exercise

Can you guess what will happen?

https://docs.google.com/document/d/1-AV3ydJfSo4xtqKE-cz7yqA6cCZA8wqJ-fIPYMgQHXU/edit?usp=sharing
https://docs.google.com/document/d/1h6WBZaW8G2ANqCepPqTBIvUcj9eHo6JjxCjn1LAGDmg/edit?usp=sharing

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Adding elements in a vector
Let’s start by writing a CUDA kernel that calculated the sum of the elements
of a vector :

__global__ void add_array(float* A, float* sum) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < N) {
 *sum +=A[idx];
 }
}

● There are 3 instructions that will be executed :
○ Load the value of A for each thread
○ Read the value of sum
○ Modify the value of sum

30

A[i]

SumA[i]

Lets try this out!
You can copy this code into a .cu file
and try to run it.
Remember: To compile first set up
your environment and then :
nvcc myscript.cu -o myscript
./myscript

Exercise

The sum is incorrect!!!

The behaviour of the kernel is
unpredictable - the read/writes
can happen in random orders

https://docs.google.com/document/d/1-AV3ydJfSo4xtqKE-cz7yqA6cCZA8wqJ-fIPYMgQHXU/edit?usp=sharing
https://docs.google.com/document/d/1h6WBZaW8G2ANqCepPqTBIvUcj9eHo6JjxCjn1LAGDmg/edit?usp=sharing

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Adding elements in a vector
Let’s try to use atomicAdd to sum the vector elements :

__global__ void add_array(float* A, float* sum) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < N) {

 atomicAdd(sum,A[idx]);

 }

}

31

A[i]

SumA[i]

Lets try this out!
You can copy this code into a .cu file
and try to run it.
Remember: To compile first set up
your environment and then :
nvcc myscript.cu -o myscript
./myscript

Exercise

Each read-modify-write access
cannot be interrupted

Lets use atomicAdd

https://docs.google.com/document/d/1-AV3ydJfSo4xtqKE-cz7yqA6cCZA8wqJ-fIPYMgQHXU/edit?usp=sharing
https://docs.google.com/document/d/1h6WBZaW8G2ANqCepPqTBIvUcj9eHo6JjxCjn1LAGDmg/edit?usp=sharing

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Adding elements in a vector
Let’s try to use atomicAdd to sum the vector elements :

__global__ void add_array(float* A, float* sum) {

 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < N) {

 atomicAdd(sum,A[idx]);

 }

}

32

A[i]

SumA[i]

Lets try this out!
You can copy this code into a .cu file
and try to run it.
Remember: To compile first set up
your environment and then :
nvcc myscript.cu -o myscript
./myscript

Exercise

Each read-modify-write access
cannot be interrupted

Now the sum is correct!!

https://docs.google.com/document/d/1-AV3ydJfSo4xtqKE-cz7yqA6cCZA8wqJ-fIPYMgQHXU/edit?usp=sharing
https://docs.google.com/document/d/1h6WBZaW8G2ANqCepPqTBIvUcj9eHo6JjxCjn1LAGDmg/edit?usp=sharing

Default CUDA stream

33

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

What is a Stream?
● Sequence of commands that execute in order

○ Executed on the device in the order in which they are issued by the host code
● A Stream can execute various types of commands.

○ Kernel invocations
○ Memory transmissions
○ Memory (de)allocations
○ Memsets
○ Synchronizations

34

Copy data to the GPU

Copy result to host

Run kernels on device

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

What is a Stream?
● Sequence of commands that execute in order.

○ Executed on the device in the order in which they are issued by the host code
● A Stream can execute various types of commands.

○ Kernel invocations
○ Memory transmissions
○ Memory (de)allocations
○ Memsets
○ Synchronizations

35

Copy data to the GPU

Copy result to host

Run kernels on device

Any instruction that runs in a stream must
complete before the next can be issued

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

CUDA default stream
● CUDA has what we call a default stream

○ By default all CUDA kernels run in this default stream
● The default stream is blocking :

○ Other commands are not executed in parallel on the device

36

Copy data to the GPU <<<kernel 1>>> <<<kernel 2>>> Copy result to host

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

CUDA default stream
● In CUDA, we can also run multiple kernels on different streams concurrently

○ Non-default CUDA streams!

37

Copy data to the GPU <<<kernel 1>>> <<<kernel 2>>> Copy result to host

Copy data to the GPU <<<kernel 1>>>

<<<kernel 2>>> Copy result to host

Copy result to host

time

Stream 1

Stream 2

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

CUDA default stream
● In CUDA, we can also run multiple kernels on different streams concurrently

○ Non-default CUDA streams!

38

Copy data to the GPU <<<kernel 1>>> <<<kernel 2>>> Copy result to host

Copy data to the GPU <<<kernel 1>>>

<<<kernel 2>>> Copy result to host

Copy result to host Performance
improvement!

time

Wrapping-up

39

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Overview of today's lecture

● We learnt about shared memory :
○ Can be static or dynamic
○ Reduces the number of loads from the global memory
○ Important efficiency consideration

● We learnt about atomic operations
○ Useful to avoid race conditions and unpredictable kernel behaviour

● Learnt about the default CUDA stream

40

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

This weeks assignment
● Assignment can be found here (Week 4) :

https://github.com/ckoraka/tac-hep-gpus

● To clone :
○ git clone git@github.com:ckoraka/tac-hep-gpus.git

● Due Friday October 20th

● Please upload assignment here :
○ https://pages.hep.wisc.edu/~ckoraka/assignments/TAC-HEP/
○ Upload only 1 .pdf file with all exercises
○ If you also have your code on git, please add the link to your repository

in the pdf file you upload.

41

https://github.com/ckoraka/tac-hep-gpus
https://pages.hep.wisc.edu/~ckoraka/assignments/TAC-HEP/

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

During the next weeks

● We will hear a lot more about CUDA
streams

● We will learn how to profile CPU &
GPU

● We will learn about managed
memory in CUDA

● We will get familiar with Alpaka

42

Back-up

43

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 3rd 2024

Resources
1. NVIDIA Deep Learning Institute material link
2. 10th Thematic CERN School of Computing material link
3. Nvidia turing architecture white paper link
4. CUDA programming guide link
5. CUDA runtime API documentation link
6. CUDA profiler user's guide link
7. CUDA/C++ best practices guide link
8. NVidia DLI teaching kit link

44

https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#device-memory-spaces-memory-spaces-cuda-device
https://developer.nvidia.com/teaching-kits

