Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU programming module

Week 4 : Introduction to CUDA

Lecture 7 - October 1% 2024

@ High Energy Physics



What we |earnt last week

e Learnt about the Nvidia GPU architecture
and explored the GPU characteristics

Learnt about threads / blocks / grid
Discussed about the CUDA core syntax
Went over basic memory management
Learnt how to look out for errors

Gayn:'ﬁ

knawlldge.f
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Today

IM READY

e We will learn more on memory management :
o Why is data caching important?
o What is the coalesced memory access
pattern?
o Why is coalesced memory access an
important efficiency consideration?
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Reminder of memory hierarchy



Reminder of memory hierarchy
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Reminder of memory hierarchy
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Reminder of memory hierarchy
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Global memory and data caching

Global memory

e Accessible by all GPU threads

e Location where memory allocated with cudaMalloc() comes from.

e Has high latency
o It takes a relatively long time for data to be loaded into registers
o Can be a performance limiter
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Global memory and data caching

Global memory

e Accessible by all GPU threads
e Location where memory allocated with cudaMalloc() comes from.

e Has high latency
o It takes a relatively long time for data to be loaded into registers

o Can be a performance limiter

Caching Data

e Process that stores multiple copies of data or files in a temporary storage location
Future requests for that data are served up faster compared to accessing the primary

storage location.
e Caching allows you to efficiently reuse previously retrieved or computed data
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Data locality

Data locality : Computation is performed where the data
resides

Two types of data locality :

e Spatial locality
o If a program accesses one memory address,
neighbouring memory locations likely to be accessed
e Temporal locality
o If a program accesses one memory address, the
same memory locations likely to be accessed
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Data locality and DRAM burst

e The devices DRAM is organized in burst
sections o[1T2]s [4TST6T] s [ o [10] 1 [i2[AS[wqS]
o Successive bytes that can be N A y
accessed simultaneously v v
o These are read into cache
memory Burst section Burst section Burst section  Burst section

e Typical burst section is 128 bytes

Example: 16-byte address space
with 4-byte burst section
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Coalesced memory access
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Coalesced access to global memory

e Threads in a warp execute the same instruction at any given point in time.
e When all threads in a warp execute a load instruction, the hardware detects
whether they access consecutive global memory locations.
o Global memory loads and stores data in as few as possible transactions

Address _ 128 256

Thread ID o 3
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Coalesced access to global memory

e When threads make a memory request and the request falls under the same
burst, the access is coalesced
e Important performance consideration as it can affect the time needed to access
data
Address _ 128 256
Every successive 128
bytes (DRAM burst) can
be accessed by a warp
ThreadID o 31
Image source [i]
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https://cvw.cac.cornell.edu/gpu/coalesced

Coalesced access to global memory

e When threads make a memory request and the request falls under the same
burst, the access is coalesced
e Important performance consideration as it can affect the time needed to access
data
Address _ 128 236
Single

Every successive 128
— bytes (DRAM burst) can
be accessed by a warp

transaction

Thread ID o

31
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Coalesced access to global memory

e |If the data accessed by the threads in a warp are not in the same burst section,
the data access will take twice as long

Address _128 256 257

Two

transactions >

Image source [i]

ThreadID o

W ~_

31

This is an undesired behaviour,
which impacts performance.
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Coalesced access to global memory

e |If the data accessed by the threads in a warp are not in the same burst section,
the data access will take twice as long

How can we conclude that an access patten is coalesced?
e Accesses in awarp are to consecutive locations if the index in an array
access is in the form of :
e Af(expression with terms independent of threadldx.x) + threadldx.x]

= Qi

transactions >

Addre]

ThreadID o 31 . _ _
This is an undesired behaviour,

which impacts performance.
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Linear representation of a matrix
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A(0,2)

A(1,2)

A(2,2)

A(3,2)

A(0,3) A[row][column] — A[row,column]

A(1,3)
A(2,3)

A(3,3)
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Linear representation of a matrix

A(0,0)

A(1,0)

A(2,0)

A(3,0)

A(0,1)

A(1,1)

A(2,1)

A(3,1)

A(0,2)

A(1,2)

A(2,2)

A(3,2)

A(0,3
(9:2) A(0,0) | A(0,1) A(0,2) | ... | A(33)

A(1,3) /
A(2,3) e Row major order

e Matrix represented in 1-D by

concatenating one row after the
A(3,3) other:

o |f sizeA = rows*columns :

o A(i,j) = i*columns+j
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Linear representation of a matrix

Ml,O M1,1 Ml,2 M1,3
MZ,O IV|2,1 M2,2 M2,3

\\
"/!3,0 M3,1 M3,2 M3,3

! MO,3 Ml,O IVI1,1 M1,2 M1,3 IV|2,0 IvIZ,l M2,2 M2,3 M3,O M3,1 M3,2 M3,3

linearized order in increasing address
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https://docs.google.com/document/d/1_AaGZriWjvw4evFGwnmKFpOlpJXeOGIvv-c_h3XzJ3g/edit

Linear representation of a matrix

A(0,0) A(0,1) | A(0,2) A(0,3)

A(1,0)  A(1,1)  A(1,2)  A(1,3)

Default way 2-d arrays are stored in C/C++
Lets try out this script to check the memory
location of the matrix elements!

A(3,0)  A(3,1) | A(3,2) A(3,3)

A(0,0) | A(0,1) A(0,2) | ... | A(33)

/

Row major order

Matrix represented in 1-D by
concatenating one row after the
other:

If size, = rows*columns :

o A(i,j) = i*columns+j
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Linear representation of a matrix

A(0,0)

A(1,0)

A(2,0)

A(3,0)

A(0,1)

A(1,1)

A(2,1)

A(3,1)

A(0,2)

A(1,2)

A(2,2)

A(3,2)

A(0,3)

A(1,3)

A(2,3)

A(3,3)

A(0,0) | A(1,0) A(2,0) | ... | A(33)

/O:Iumn major order

e Matrix represented in 1-D by
concatenating one column after
the other:

o |f sizeA = rows*columns :

o A(i,j) =j*columns+i
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Example - Matrix multiplication

Thread 1

Thread 2

Image source [8]

WIDTH

B

HEIGHT

A:M*N

B:N*K
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Example - Matrix multiplication

Thread 1

Thread 2

First iteration — a warp of 32 threads
reads element 0 of the first 32 rows

Image source [8]

WIDTH

A:M*N

Matrix A has an unfavorable data access
pattern:

e Threadsin awarp read adjacent rows
During the first iteration, threads in a
warp read element 0 of rows O
through 31.
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Example - Matrix multiplication

Thread 1

Thread 2

Second iteration — the same warp of 32
threads reads element 1 of the first 32 rows

Image source [8]

WIDTH

A:M*N

Matrix A has an unfavorable data access
pattern:

e Threadsin awarp read adjacent rows
During the first iteration, threads in a
warp read element 0 of rows O
through 31.

e During the second iteration the same
set of threads read element 1 of rows
0 through 31.
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Example - Matrix multiplication

Thread 1

Thread 2

Image source [8]

A

ﬂ

WIDTH

A:M*N

Matrix A has an unfavorable data access
pattern:

e Threadsin awarp read adjacent rows
During the first iteration, threads in a
warp read element 0 of rows O
through 31.

e During the second iteration the same
set of threads read element 1 of rows
0 through 31.

None of the accesses will be coalesced!!
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Example - Matrix multiplication

To

Load iteration 1
Tl T2

Image source [8]

Load iteration O
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Access ' ' ’ ’
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Example - Matrix multiplication

Thread1 Thread 2

Matrix B has a favorable data access pattern:

e FEach thread reads a column of N elements
e During the first iteration, threads in a warp
read element O of columns O to 31

HEIGHT

B:N*K

First iteration — a warp of 32 threads
reads element O of the first 32 columns
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Example - Matrix multiplication

Thread1 Thread 2

Matrix B has a favorable data access pattern:

e Each thread reads a column of N elements

e During the first iteration, threads in a warp
read element 0 of columns 0 to 31

e During the second iteration, threads in a warp
read element 1 of columns 0 to 31

HEIGHT

B:N*K

Second iteration — the same warp of 32 threads
reads element 1 of the first 32 columns
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Example - Matrix multiplication

Thread1 Thread 2

Matrix B has a favorable data access pattern:

e Each thread reads a column of N elements

e During the first iteration, threads in a warp
read element 0 of columns 0 to 31

e During the second iteration, threads in a warp
read element 1 of columns 0 to 31

HEIGHT

Image source [8]

B:N*K

These elements are stored in the same burst
section & these accesses will be coalesced!
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Example - Matrix multiplication

Load iteration O Load iteration 1

T, T, T, T,|| T, T, T, T,

Bo.o Bo,1 Bo,z Bo,3 Bl,O B1,1 Bl,2 51,3 Bz,o BZ,l Bz,z 52,3 B3,o B3,1 B3,2 B3,3
>

Access
direction In
kernel code
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Example - Matrix multiplication

__global  void matrix mult (float* A, float* B, float* Let's take a look at this kernel that
CREERNIA performs matrix multiplication of

two matrices.
int row = blockIdx.y * blockDim.y + threadIdx.y;

int column = blockIdx.x * blockDim.x + threadIdx.x;
if((row < N) && (column < N)) {
float sum = 0;

for(int k = 0; k < N; k++) {

sum += A[row*N + k] * B[k*N + column];

}

Clrow * N + column] = sum;
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Example - Matrix multiplication

__global _ void matrix mult (float* A, float* B, float* Let's take a look at this kernel that
C, int N){ performs matrix multiplication of two
matrices.
int row = blockIdx.y * blockDim.y + threadIdx.y;
int column = blockIdx.x * blockDim.x + threadIdx.x; Questions:
if ((row < N) && (column < N)) { - Is memory access of elements of
float sum = 0; matrix A coalesced?

for (int k = 0; k < N; k++) {
sum += A[row*N + k] * B[k*N + column];

}

Clrow * N + column] = sum;
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Example - Matrix multiplication

__global _ void matrix mult (float* A, float* B, float* Let's take a look at this kernel that
C, int N){ performs matrix multiplication of two
matrices.
int row = blockIdx.y * blockDim.y + threadIdx.y;
int column = blockIdx.x * blockDim.x + threadIdx.x; Questions:
if ((row < N) && (column < N)) { - Is memory access of elements of
float sum = 0; matrix A coalesced?

for(int k = 0; k < N; k++) {

sum += A[row*N + k] * B[k*N + column];

) REMEMBER |

Clrow * N + columrf How can we conclude that an access patten is coalesced?

} e Accesses in awarp are to consecutive locations if the index in an array

} access is in the form of :
e Al(expression with terms independent of threadldx.x) + threadldx.x]
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Example - Matrix multiplication

__global  void matrix mult (float* A, float* B, float*
C, int N) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int column = blockIdx.x * blockDim.x + threadIdx.x;

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

if((row < N) && (column < N)) {

float sum = 0;

NO: row*N+k = blockldx.y * blockDim.y * N + threadldx.y *N + k

for (int k = 0; k < N; k++) {
sum += A[row*N + k] * B[k*N + column];
}

Clrow * N + column] = sum;

TAC-HEP : GPU programming module - Charis Kleio Koraka - October 1% 2024
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Example - Matrix multiplication

__global  void matrix mult (float* A, float* B, float*

C,

int N) {

int row = blockIdx.y * blockDim.y + threadIdx.y;
int column = blockIdx.x * blockDim.x + threadIdx.x;
if((row < N) && (column < N)) {
float sum = 0;
for(int k = 0; k < N; k++) {

sum += A[row*N + k] * B[k*N + column];
}

Clrow * N + column] = sum;

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

- Is memory access of elements of
matrix B coalesced?

TAC-HEP : GPU programming module - Charis Kleio Koraka - October 1% 2024
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Example - Matrix multiplication

__global  void matrix mult (float* A, float* B, float* Let's take a look at this kernel that
CREERNIA performs matrix multiplication of two
matrices.
int row = blockIdx.y * blockDim.y + threadIdx.y;
int column = blockIdx.x * blockDim.x + threadIdx.x; Questions:
if ((row < N) && (column < N)){ - Is memory access of elements of
oo el — U matrix A coalesced?
for(int k = 0; k < N; k++) { . . .

sum += Alrow*N + k] * B[k*N + column]; | YES: k*N+column = k*N+blockldx.x*blockDim.x+threadldx.x

}

Clrow * N + column] = sum;
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Example - Matrix multiplication

__global  void matrix mult (float* A, float* B, float* Let's take a look at this kernel that
C, int N) { performs matrix multiplication of two
matrices.
int row = blockIdx.y * blockDim.y + threadIdx.y;
int column = blockIdx.x * blockDim.x + threadIdx.x; Questions:
if ((row < N) && (column < N)) { - Is memory access of elements of
float sum = 0; matrix A coalesced?
for(int k = 0; k < N; k++) {

- Is memory access of elements of
} matrix B coalesced?
- Is memory access of elements of
C[row * N + column] = sum; ]
, matrix C coalesced?

sum += A[row*N + k] * B[k*N + column];
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Example - Matrix multiplication

__global _ void matrix mult (float* A, float* B, float* Let's take a look at this kernel that
C, int N){ performs matrix multiplication of two
matrices.
int row = blockIdx.y * blockDim.y + threadIdx.y;
int column = blockIdx.x * blockDim.x + threadIdx.x; Questions:
if ((row < N) && (column < N)) { - Is memory access of elements of
float sum = 0; matrix A coalesced?
for(int k = 0; k < N; k++) {

- Is memory access of elements of
matrix B coalesced?

sum += A[row*N + k] * B[k*N + column];

}

Clrow * N + column] - sum; YES: row*N+column = N*blockldx.y * blockDim.y +
} N*threadldx.y + blockldx.x * blockDim.x + threadldx.x
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Wrapping-up



Overview of today’s lecture

e Today we went deeper into memory management with CUDA
o Discussed about data locality and caching
o Understood the coalesced memory data access pattern
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Overview of today’s lecture

e Today we went deeper into memory management with CUDA
o Discussed about data locality and caching
o Understood the coalesced memory data access pattern

Let's take 5 mins to fill-in this mid-training survey!
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https://docs.google.com/forms/d/1L3yYqClRG2g2_51ln_KlB025b-474REYHnXAnNxcZIY/edit

Tomorrow

SEEYOU'TOMORROW

We will learn about :
e Shared memory
e Atomic operations
e The default CUDA stream
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Back-up
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Resources

NVIDIA Deep Learning Institute material link

10th Thematic CERN School of Computing material link
Nvidia turing architecture white paper link

CUDA programming guide link

CUDA runtime APl documentation link

CUDA profiler user's guide link

CUDA/C++ best practices guide link

NVidia DLI teaching kit link

0 NOUTAWN =
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https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#device-memory-spaces-memory-spaces-cuda-device
https://developer.nvidia.com/teaching-kits

