
Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU programming module

Week 4 : Introduction to CUDA

Lecture 7 - October 1st 2024

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

What we learnt last week

● Learnt about the Nvidia GPU architecture
and explored the GPU characteristics

● Learnt about threads / blocks / grid
● Discussed about the CUDA core syntax
● Went over basic memory management
● Learnt how to look out for errors

2

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Today

● We will learn more on memory management :
○ Why is data caching important?
○ What is the coalesced memory access

pattern?
○ Why is coalesced memory access an

important efficiency consideration?

3

Reminder of memory hierarchy

4

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Reminder of memory hierarchy

5Image source [1]

On-chip
Accesses by a single thread

Registers

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Reminder of memory hierarchy

6Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Reminder of memory hierarchy

7Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

Off-chip
Read-only

Constant/
texture

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Reminder of memory hierarchy

8Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

Off-chip
Read-only

Constant/
texture

Off-chip
Accesses by all threads all blocks

L2 Cache

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Reminder of memory hierarchy

9Image source [1]

On-chip
Accesses by a single thread

On-chip
Accesses by all threads in block

Registers

L1 shared

Off-chip
Read-only

Constant/
texture

Off-chip
Accesses by all threads all blocks

L2 Cache

DRAM / large
Accessed by device & host

Global

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Reminder of memory hierarchy

10Image source [7]

On-chip
Accesses by all threads in block

On-chip
Accesses by all threads in block

Registers

L1 shared

Off-chip
Read-only

Constant/
texture

Off-chip
Accesses by all threads all blocks

L2 Cache

DRAM / large
Accessed by device & host

Global

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Global memory and data caching
Global memory

● Accessible by all GPU threads
● Location where memory allocated with cudaMalloc() comes from.
● Has high latency

○ It takes a relatively long time for data to be loaded into registers
○ Can be a performance limiter

11

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Global memory and data caching
Global memory

● Accessible by all GPU threads
● Location where memory allocated with cudaMalloc() comes from.
● Has high latency

○ It takes a relatively long time for data to be loaded into registers
○ Can be a performance limiter

Caching Data

● Process that stores multiple copies of data or files in a temporary storage location
● Future requests for that data are served up faster compared to accessing the primary

storage location.
● Caching allows you to efficiently reuse previously retrieved or computed data

12

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Data locality
Data locality : Computation is performed where the data
resides

Two types of data locality :

● Spatial locality
○ If a program accesses one memory address,

neighbouring memory locations likely to be accessed
● Temporal locality

○ If a program accesses one memory address, the
same memory locations likely to be accessed

13

Accessing x0 will also load
into cache elements x1-7

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Data locality and DRAM burst

● The devices DRAM is organized in burst
sections
○ Successive bytes that can be

accessed simultaneously
○ These are read into cache

memory
● Typical burst section is 128 bytes

14

4 5 6 7 8 9 10 11 12 13 14 153210

Burst section Burst section Burst section Burst section

Example: 16-byte address space
with 4-byte burst section

Coalesced memory access

15

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Coalesced access to global memory

16Image source [1]

● Threads in a warp execute the same instruction at any given point in time.
● When all threads in a warp execute a load instruction, the hardware detects

whether they access consecutive global memory locations.
○ Global memory loads and stores data in as few as possible transactions

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Coalesced access to global memory
● When threads make a memory request and the request falls under the same

burst, the access is coalesced
● Important performance consideration as it can affect the time needed to access

data

17Image source [i]

Every successive 128
bytes (DRAM burst) can
be accessed by a warp

https://cvw.cac.cornell.edu/gpu/coalesced

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Coalesced access to global memory
● When threads make a memory request and the request falls under the same

burst, the access is coalesced
● Important performance consideration as it can affect the time needed to access

data

18Image source [i]

Every successive 128
bytes (DRAM burst) can
be accessed by a warp

Single
transaction

https://cvw.cac.cornell.edu/gpu/coalesced

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Coalesced access to global memory
● If the data accessed by the threads in a warp are not in the same burst section,

the data access will take twice as long

19Image source [i]

This is an undesired behaviour,
which impacts performance.

Two
transactions

https://cvw.cac.cornell.edu/gpu/coalesced

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

● If the data accessed by the threads in a warp are not in the same burst section,
the data access will take twice as long

Coalesced access to global memory

20Image source [i]

This is an undesired behaviour,
which impacts performance.

Two
transactions

How can we conclude that an access patten is coalesced?
● Accesses in a warp are to consecutive locations if the index in an array

access is in the form of :
● A[(expression with terms independent of threadIdx.x) + threadIdx.x]

https://cvw.cac.cornell.edu/gpu/coalesced

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Linear representation of a matrix

21

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

A[row][column] → A[row,column]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Linear representation of a matrix

22

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

A(0,0) A(0,1) A(0,2) … A(3,3)

● Row major order
● Matrix represented in 1-D by

concatenating one row after the
other :

● If sizeA = rows*columns :

○ A(i,j) = i*columns+j

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Linear representation of a matrix

23

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

A(0,0) A(0,1) A(0,2) … A(3,3)

● Row major order
● Matrix represented in 1-D by

concatenating one row after the
other :

● If sizeA = rows*columns :

○ A(i,j) = i*columns+j

● Default way 2-d arrays are stored in C/C++
● Lets try out this script to check the memory

location of the matrix elements!

Image source [7]

https://docs.google.com/document/d/1_AaGZriWjvw4evFGwnmKFpOlpJXeOGIvv-c_h3XzJ3g/edit

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Linear representation of a matrix

24

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

A(0,0) A(0,1) A(0,2) … A(3,3)

● Row major order
● Matrix represented in 1-D by

concatenating one row after the
other :

● If sizeA = rows*columns :

○ A(i,j) = i*columns+j

● Default way 2-d arrays are stored in C/C++
● Lets try out this script to check the memory

location of the matrix elements!

https://docs.google.com/document/d/1_AaGZriWjvw4evFGwnmKFpOlpJXeOGIvv-c_h3XzJ3g/edit

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Linear representation of a matrix

25

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

A(0,0) A(1,0) A(2,0) … A(3,3)

● Column major order
● Matrix represented in 1-D by

concatenating one column after
the other :

● If sizeA = rows*columns :

○ A(i,j) = j*columns+i

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

26

A : M * N B: N * K

Thread 1

Thread 2

Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

27

Thread 1

Thread 2

Matrix A has an unfavorable data access
pattern :

● Threads in a warp read adjacent rows
● During the first iteration, threads in a

warp read element 0 of rows 0
through 31.

First iteration → a warp of 32 threads
reads element 0 of the first 32 rows

A : M * N

Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

28

Thread 1

Thread 2

Matrix A has an unfavorable data access
pattern :

● Threads in a warp read adjacent rows
● During the first iteration, threads in a

warp read element 0 of rows 0
through 31.

● During the second iteration the same
set of threads read element 1 of rows
0 through 31.

Second iteration → the same warp of 32
threads reads element 1 of the first 32 rows

A : M * N

Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

29

Thread 1

Thread 2

Matrix A has an unfavorable data access
pattern :

● Threads in a warp read adjacent rows
● During the first iteration, threads in a

warp read element 0 of rows 0
through 31.

● During the second iteration the same
set of threads read element 1 of rows
0 through 31.

None of the accesses will be coalesced!!

A : M * N

Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

30Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

31

Thread 1 Thread 2

Matrix B has a favorable data access pattern :

● Each thread reads a column of N elements
● During the first iteration, threads in a warp

read element 0 of columns 0 to 31

B: N * K

First iteration → a warp of 32 threads
reads element 0 of the first 32 columns

Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

32

Thread 1 Thread 2

Matrix B has a favorable data access pattern :

● Each thread reads a column of N elements
● During the first iteration, threads in a warp

read element 0 of columns 0 to 31
● During the second iteration, threads in a warp

read element 1 of columns 0 to 31

B: N * K

Second iteration → the same warp of 32 threads
reads element 1 of the first 32 columns

Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

33

Thread 1 Thread 2

Matrix B has a favorable data access pattern :

● Each thread reads a column of N elements
● During the first iteration, threads in a warp

read element 0 of columns 0 to 31
● During the second iteration, threads in a warp

read element 1 of columns 0 to 31

B: N * K These elements are stored in the same burst
section & these accesses will be coalesced!

Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

34Image source [8]

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

35

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of
two matrices.

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

36

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

37

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

How can we conclude that an access patten is coalesced?
● Accesses in a warp are to consecutive locations if the index in an array

access is in the form of :
● A[(expression with terms independent of threadIdx.x) + threadIdx.x]

REMEMBER

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

38

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

NO: row*N+k = blockIdx.y * blockDim.y * N + threadIdx.y *N + k

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

39

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

- Is memory access of elements of
matrix B coalesced?

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

40

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

- Is memory access of elements of
matrix B coalesced? YES: k*N+column = k*N+blockIdx.x*blockDim.x+threadIdx.x

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

41

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

- Is memory access of elements of
matrix B coalesced?

- Is memory access of elements of
matrix C coalesced?

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Example - Matrix multiplication

42

__global__ void matrix_mult (float* A, float* B, float*

C, int N){

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 int column = blockIdx.x * blockDim.x + threadIdx.x;

 if((row < N) && (column < N)){

 float sum = 0;

 for(int k = 0; k < N; k++) {

 sum += A[row*N + k] * B[k*N + column];

 }

 C[row * N + column] = sum;

 }

}

Let's take a look at this kernel that
performs matrix multiplication of two
matrices.

Questions :

- Is memory access of elements of
matrix A coalesced?

- Is memory access of elements of
matrix B coalesced?

- Is memory access of elements of
matrix C coalesced?

YES: row*N+column = N*blockIdx.y * blockDim.y +
N*threadIdx.y + blockIdx.x * blockDim.x + threadIdx.x

Wrapping-up

43

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Overview of today's lecture

● Today we went deeper into memory management with CUDA
○ Discussed about data locality and caching
○ Understood the coalesced memory data access pattern

44

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Overview of today's lecture

● Today we went deeper into memory management with CUDA
○ Discussed about data locality and caching
○ Understood the coalesced memory data access pattern

45

Let's take 5 mins to fill-in this mid-training survey!

https://docs.google.com/forms/d/1L3yYqClRG2g2_51ln_KlB025b-474REYHnXAnNxcZIY/edit

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Tomorrow

We will learn about :
● Shared memory
● Atomic operations
● The default CUDA stream

46

Back-up

47

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 1st 2024

Resources
1. NVIDIA Deep Learning Institute material link
2. 10th Thematic CERN School of Computing material link
3. Nvidia turing architecture white paper link
4. CUDA programming guide link
5. CUDA runtime API documentation link
6. CUDA profiler user's guide link
7. CUDA/C++ best practices guide link
8. NVidia DLI teaching kit link

48

https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#device-memory-spaces-memory-spaces-cuda-device
https://developer.nvidia.com/teaching-kits

