
Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU programming module

Week 3 : Introduction to CUDA

Lecture 5 - September 24th 2024

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

What we learnt in the previous lecture

● Brushed up on C++:
○ Core syntax
○ Variables & Operators
○ Control instructions & Functions
○ Compound data types
○ OOP
○ C++ compilation chain

2

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Today

● Nvidia GPU architecture
● How to check if the system has a GPU & explore

its characteristics
● Concept of parallelization

○ Threads / blocks / grid
● CUDA core syntax
● Our first “Hello world” CUDA kernel

3

NVidia GPU architecture

4

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

The NVidia GPU architecture

5

● The GPU architecture is built around a
scalable array of Streaming
Multiprocessors (SM).

● Each SM in a GPU is designed to
support concurrent execution of
hundreds of threads

Image source [3]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

The NVidia GPU architecture

6

● The GPU architecture is built around a
scalable array of Streaming
Multiprocessors (SM).

● Each SM in a GPU is designed to
support concurrent execution of
hundreds of threads

SM

Image source [3]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

The NVidia GPU architecture

7

● The GPU architecture is built around a
scalable array of Streaming
Multiprocessors (SM).

● Each SM in a GPU is designed to
support concurrent execution of
hundreds of threads

PCIe interconnect: Can be
used for connecting GPU to
host CPU

NVlink : Can be used to
connect to additional GPUs

SM

Image source [3]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

The Streaming Multiprocessor

8Image source [3]

The SM consists of :

● Execution cores
○ e.g. single precision floating-point, special

function units etc.
● Schedulers for warps

○ These are used for issuing instructions to
warps based on a particular scheduling
policies.

● Registers
○ fast on-chip memory used to store operands

for the operations executed by the GPU cores
● Caches

○ Intermediate high-speed storage resources
between the processor and memory

○ L1/constant/texture cache, Shared memory

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

GPU memory hierarchy

● Registers
○ Memory private to each thread
○ Fastest form of memory

9Image source [i]

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

GPU memory hierarchy

● Registers
○ Memory private to each thread
○ Fastest form of memory

● L1 cache/Shared memory
○ Fast accessible memory that can be

accessed by threads in the same
block and threads of different blocks
in the same SM

10Image source [i]

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

GPU memory hierarchy
● Registers

○ Memory private to each thread
○ Fastest form of memory

● L1 cache/Shared memory
○ Fast accessible memory that can be

accessed by threads in the same
block and threads of different blocks
in the same SM

● Read-only
○ Each SM has a constant/texture

cache memory which is read-only to
kernel code. Fast but limited in size

11Image source [i]

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

GPU memory hierarchy
● Registers

○ Memory private to each thread
○ Fastest form of memory

● L1 cache/Shared memory
○ Fast accessible memory that can be

accessed by threads in the same
block and threads of different blocks
in the same SM

● Read-only
○ Each SM has a constant/texture

cache memory which is read-only to
kernel code. Fast but limited in size

● L2 Cache
○ Memory that all threads in all blocks

can access. Fast but limited in size.

12Image source [i]

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

GPU memory hierarchy ● Registers
○ Memory private to each thread
○ Fastest form of memory

● L1 cache/Shared memory
○ Fast accessible memory that can be

accessed by threads in the same
block and threads of different blocks
in the same SM

● Read-only
○ Each SM has a constant/texture

cache memory which is read-only to
kernel code. Fast but limited in size

● L2 Cache
○ Memory that all threads in all blocks

can access. Fast but limited in size.
● Global memory

○ GPUs DRAM memory
○ Slow but large

13Image source [i]

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

Exploring the GPU

14

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

nvidia-smi
nvidia-smi: NVIDIA System Management Interface program
● Command line utility
● Aids in the management and monitoring of NVIDIA GPU devices

15

ssh <username>@login.hep.wisc.edu
ssh g38nXX # You can choose XX = 01-16
nvidia-smi
Then let’s check out some additional GPU information :
touch deviceInfo.cu # Copy the code snippet from the next slide
export LD_LIBRARY_PATH=/usr/local/cuda/lib
export PATH=$PATH:/usr/local/cuda/bin
nvcc deviceInfo.cu -o deviceInfo
./deviceInfo

Lets try this out!

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

#include <stdio.h>

int main()

{

 int nDevices;

 cudaGetDeviceCount(&nDevices);

 printf("--\n");

 for (int i = 0; i < nDevices; i++)

 {

 cudaDeviceProp prop;

 cudaGetDeviceProperties(&prop, i);

 printf("Device Number: %d\n", i);

 printf(" Device name: %s\n", prop.name);

 printf(" Memory Clock Rate (KHz): %d\n",prop.memoryClockRate);

 printf(" Memory Bus Width (bits): %d\n",prop.memoryBusWidth);

 printf(" Compute capability: %d.%d\n",prop.major,prop.minor);

 printf(" Peak Memory Bandwidth (GB/s): %f\n\n",2.0*prop.memoryClockRate*(prop.memoryBusWidth/8)/1.0e6);

 printf(" Number of SMs: %d\n", prop.multiProcessorCount);

 printf(" Maximum grid dimensions: %d,%d,%d\n",prop.maxGridSize[0] ,prop.maxGridSize[1] ,prop.maxGridSize[2]);

 printf(" Warp size %d\n",prop.warpSize);

 printf(" Max # of threads / block: %d\n",prop.maxThreadsPerBlock);

 printf(" Max size of a block blockDim.x : %d, .y : %d, .z : %d \n",prop.maxThreadsDim[0], prop.maxThreadsDim[1],prop.maxThreadsDim[2]);

 }

 printf("--\n");

}

16

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

#include <stdio.h>

int main()

{

 int nDevices;

 cudaGetDeviceCount(&nDevices);

 printf("--\n");

 for (int i = 0; i < nDevices; i++)

 {

 cudaDeviceProp prop;

 cudaGetDeviceProperties(&prop, i);

 printf("Device Number: %d\n", i);

 printf(" Device name: %s\n", prop.name);

 printf(" Memory Clock Rate (KHz): %d\n",prop.memoryClockRate);

 printf(" Memory Bus Width (bits): %d\n",prop.memoryBusWidth);

 printf(" Compute capability: %d.%d\n",prop.major,prop.minor);

 printf(" Peak Memory Bandwidth (GB/s): %f\n\n",2.0*prop.memoryClockRate*(prop.memoryBusWidth/8)/1.0e6);

 printf(" Number of SMs: %d\n", prop.multiProcessorCount);

 printf(" Maximum grid dimensions: %d,%d,%d\n",prop.maxGridSize[0] ,prop.maxGridSize[1] ,prop.maxGridSize[2]);

 printf(" Warp size %d\n",prop.warpSize);

 printf(" Max # of threads / block: %d\n",prop.maxThreadsPerBlock);

 printf(" Max size of a block blockDim.x : %d, .y : %d, .z : %d \n",prop.maxThreadsDim[0], prop.maxThreadsDim[1],prop.maxThreadsDim[2]);

 }

 printf("--\n");

}

17

Questions :
● How many devices are found?
● What type of GPUs are they?
● How many SMs per device?
● What is the warp size?
● How many threads are allowed per block?

CUDA programming model

18

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

The CUDA programming model
CUDA → Compute Unified Device Architecture.

● It is an extension of C/C++ programming
● Developed by Nvidia and is used to develop applications

executed on NVidia GPUs

To execute any CUDA program, there are three main steps:

● Copy the input data from CPU or host memory to the device
memory

● Execute the CUDA program
● Copy the results from device memory to host memory

19

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Hardware to software mapping

20

Hardware Software

● A scalar processor or CUDA core is
equivalent to a software thread

○ Scalar processors are
grouped into a SM

● Each execution of a GPU function is done
concurrently on a number of threads
referred to as a thread block

● Each thread block is executed by one SM
and cannot be migrated to other SMs in
GPU

● The set of thread blocks executing the
GPU function is called a grid.

● In CUDA terminology the GPU is
referred to as the device

Image source [2]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Threads & blocks
● In CUDA, built-in variables are available in order to express threads and blocks :

○ threadIdx & blockIdx

● The variables have 3-dimensional indexing & provide a natural way to express
elements in vectors and matrices :
○ threadIdx.x , threadIdx.y threadIdx.z

21Image source [1],[2]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Indexing using blockIdx and threadIdx
● The threadIdx & blockIdx variables can be used to express the unique index of an element in

an array/matrix etc.
● Assuming that each block consists of a number of M threads :

○ index = threadIdx.x + blockIdx.x * M;

22Image source [1]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Arranging threads in blocks

● CUDA architecture limits the numbers of
threads per block (1024 threads per block
limit).

● The dimension of the thread block is
accessible within the kernel through the
built-in blockDim variable :
○ blockDim.x,blockDim.y,blockDim.z

● CUDA thread blocks are grouped into a grid
● The dimension of the grid is accessible

within the kernel through the built-in
gridDim variable:
○ gridDim.x,gridDim.y,gridDim.z

23Image source [1],[2]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Warps
● Within a thread block, threads are executed in

groups → Warps
● A warp is an entity of 32 threads on Nvidia

GPUs
● If the block size is not divisible by 32, some of

the threads in the last warp will remain idle :
○ block size should be chosen to be a

multiple of the warp size
● Threads in the same warp are processed

simultaneously

24Image source [2]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

CUDA kernel

25

● CUDA kernel is a function that gets executed on
the GPU

● The kernel expresses the portion of the
application that is parallelizable
○ It will be executed multiple times in parallel

by different CUDA threads

Image source [4]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

CUDA function declarations

26

Declaration Callable from: Executed on:

_ _global_ _ host device

_ _device_ _ device device

_ _host_ _ host host

● _ _global_ _ keyword defines a kernel function:
○ Is launched by host and executed on the device
○ Must return void

● _ _device_ _ and _ _host_ _ can be used together
● _ _host_ _ declaration, if used alone, can be omitted

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Launching a CUDA kernel
● Let’s assume we have the following kernel :

__global__ void mykernel() {
…Do something…

}

● How do we launch it?

myKernel<<<nBlocks,nThreads>>>();

● The above command will launch the kernel with nBlocks, each of which has nThreads.
● The kernel is executed multiple times concurrently by different threads
● The total number of invocations of the kernel body is now nBlocks * nThreads.

This is the block dimension i.e. the
number of threads within a block

This is the grid dimension i.e. the number of blocks that
will be launched
CUDA

27

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Our first Hello World kernel
#include <stdio.h>

__global__ void cuda_hello(){

 printf("Hello World from GPU");

}

int main() {

 int gridDim = 1;

 int blockDim = 1;

 cuda_hello<<<gridDim,blockDim>>>();

 return 0;

}

28

__global__ function declaration since the
kernel is called from the host & executed on
the device.

Called from main which is executed on the
host

Launched with gridDim*blockDim number of threads.

touch cuda_hello.cu
nvcc cuda_hello.cu -o cuda_hello
./cuda_hello

Lets try this out!

What do you observe? Or
rather don't observe?

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Our first Hello World kernel
#include <stdio.h>

__global__ void cuda_hello(){

 printf("Hello World from GPU");

}

int main() {

 int gridDim = 1;

 int blockDim = 1;

 cuda_hello<<<gridDim,blockDim>>>();

 return 0;

}

29

● Why is nothing printed out on the screen?
○ Lets try and change the number of

threads/block
○ Does this have any impact?

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Our first Hello World kernel
#include <stdio.h>

__global__ void cuda_hello(){

 printf("Hello World from GPU");

}

int main() {

 int gridDim = 1;

 int blockDim = 1;

 cuda_hello<<<gridDim,blockDim>>>();

 cudaDeviceSynchronize();

 return 0;

}

30

● Kernel launches are asynchronous
● Control returns to the CPU immediately!
● CPU needs to synchronize before consuming

the results

Blocks the CPU until all preceding CUDA calls have
complete

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Our first Hello World kernel
#include <stdio.h>

__global__ void cuda_hello(){

 printf("Hello World from GPU. Running thread %d \n",threadIdx.x);

}

int main() {

 int gridDim = 1;

 int blockDim = 1;

 cuda_hello<<<gridDim,blockDim>>>();

 cudaDeviceSynchronize();

 return 0;

}

31

Lets try and access some of the device built-in
variables !
Try this out :
● Can you also print out the blockIdx.x from

the cuda_hello kernel?
● Let's play around with the number of threads

and blocks. What do you observe?

Wrapping-up

32

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Overview of today's lecture

● Learnt about the Nvidia GPU architecture
● Checked if our system has a GPU
● Explored the GPU characteristics
● Got introduced to the concept of parallelization :

○ Threads / blocks / grid
● Learnt about CUDA kernels and the CUDA core syntax
● Wrote our first “Hello world” CUDA kernel

33

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

In the next lecture
● We will get deeper into the CUDA

programming model :
○ Basic memory management
○ More on synchronization
○ Error handling

34

Back-up

35

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 24th 2024

Resources
1. NVIDIA Deep Learning Institute material link
2. 10th Thematic CERN School of Computing material link
3. Nvidia turing architecture white paper link
4. CUDA programming guide link
5. CUDA runtime API documentation link
6. CUDA profiler user's guide link

36

https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#

