
Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU programming module

Week 2 : Introduction to C++

Lecture 3 - September 17th 2024

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024 2

TAC-HEP GPU
training
module

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

What we learnt in the previous lecture
● Hardware accelerators can be used in combination with CPUs to executing

specific tasks more efficiently

● GPUs are hardware accelerators that follow the SIMT paradigm

○ Have thousands of cores and therefore can provide massive parallelization

○ Can provide more FLOPS/watt that CPUs

● The next decades will pose a significant computing challenge for HEP experiments

○ Many HEP experiments are already exploring the use of accelerators and
heterogeneous computing

3

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Today : Some brushing up of C++

● History of C++
● Core syntax
● Variables & Operators
● Control instructions
● Functions

4

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

 History of C++

● Multi-paradigm programming language that
supports object-oriented programming

● Based on C language developed by Dennis Ritchie
● Designed at Bell labs in the late 70s by Bjarne

Stroustrup

5

C inventor C++ inventor

Image taken from [3]

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Why is C++ so widely used
● Fast

○ C++ is a compiled language unlike other languages e.g. python / Java which are
interpreted

● Object oriented
○ Modular and reusable code

● Low level
○ Closer to hardware / allows low level optimization

● Many available libraries
○ Standard Template Library (STL) provides template that can be used from the

developer and make coding faster

6

Core syntax

7

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Structure of a C++ program

8

Let's look into the main structure and components of a C++ program by
checking out a simple program that print out “Hello world” :

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Structure of a C++ program
#include <iostream>
● Special lines interpreted

before compilation
● Instruct the preprocessor to

include a section of standard
C++ code

● e.g iostream allows standard
I/O operations

9

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Structure of a C++ program
#include <iostream>
● Special lines interpreted

before compilation
● Instruct the preprocessor to

include a section of standard
C++ code

● e.g iostream allows standard
I/O operations

10

int main()

● Special C++ function
● All C++ programs start

execution from main

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Structure of a C++ program
#include <iostream>
● Special lines interpreted

before compilation
● Instruct the preprocessor to

include a section of standard
C++ code

● e.g iostream allows standard
I/O operations

11

int main()

● Special C++ function
● All C++ programs start

execution from main

std::cout << “Hello World”;

● C++ statement :
○ std::cout standard

character output
○ “Hello World” string of

characters that will be
outputted

○ << insertion operator
○ ; every statement

should end with a
semi-colon

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Structure of a C++ program
#include <iostream>
● Special lines interpreted

before compilation
● Instruct the preprocessor to

include a section of standard
C++ code

● e.g iostream allows standard
I/O operations

12

int main()

● Special C++ function
● All C++ programs start

execution from main

std::cout << “Hello World”;

● C++ statement :
○ std::cout standard

character output
○ “Hello World” string of

characters that will be
outputted

○ << insertion operator
○ ; every statement

should end with a
semi-colon

{.........}

Curly braces enclose the
body of a function

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Comments in C++
Line comment

// This is a line comment

Block comment

/* This is a block comment
It can span on more than 1 lines

*/

doxygen compatible comments : tool for generating documentation from annotated C++ sources [documentation]

/**
* doxygen compatible comments
* \fn bool isOdd(int i)
* \brief checks whether i is odd
* \param i input
* \return true if i is odd, otherwise false
*/

13

Useful and important tool since
it makes code more readable
and easier to share

https://www.doxygen.nl/

Variables and operators

14

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Variables
● Variable → portion of memory used to

store a value.
● Name of variable →Identifier

○ Combination of letters, digits, or
underscore characters

○ C++ keywords cannot be used

15

Variable types Names Example

Character
char
char16_t
char32_t

char c = 'a'

16-bit wide

32-bit wide

Integer

int
(un)signed char
(un)signed int
short/long (int)

int i = 2023

8-bit wide

32-bit wide

16-bit wide

Floating-point

float

double

float f = 2.023f

32-bit wide

double d = 2.023

64-bit wide

Boolean bool
bool a = true

bool b = false

Size Number

8-bit 28

16-bit 216

32-bit 232

64-bit 264

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Operators

16

Types Operators Usage

Assignment operator = Assign value to variable

Arithmetic operators +, -, *, /, % Mathematical operations

Compound assignment
+=, -=, *=, /=, %=,

>>=, <<=, &=, ^=, |=
modify the current value by

performing an operation

Increment and decrement ++,-- equivalent to +=1 & -=1

Relational and comparison ==, !=, >, <, >=, <= Comparisons of two
expressions

Logical !, &&, || not / and / or

Conditional ternary
operator

?

Returns different value if
expression is true or false

Syntax :
condition ? result1 : result2

Bitwise operators &, |, ^, ~, <<, >> modify variables
considering the bit patterns

Operators can operate
on variables

There are many types
some of which are
summarized in the table

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Operators

17

#include <iostream>
using namespace std;

int main ()
{

 int a,b,c;
 bool d;

 // Assignment & arithmetic
 a=2;
 b=7+3;
 // Assignment, logical & comparison
 d = !(7 == 5);
 // Conditional & relational
 c = (a>b) ? a : b;
 // Compound assignment & increment
 a+=2;
 b = ++a;
 // What is the value of each variable?
 cout <<" a : " << a << '\n';
 cout <<" b : " << b << '\n';
 cout <<" c : " << c << '\n';
 cout <<" d : " << d << '\n';

}

What are the values
of variables a,b,c & d?

Let's check using
onlinegdb

https://www.onlinegdb.com/online_c++_compiler

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Operators

18

#include <iostream>
using namespace std;

int main ()
{

 int a,b,c;
 bool d;

 // Assignment & arithmetic
 a=2;
 b=7+3;
 // Assignment, logical & comparison
 d = !(7 == 5);
 // Conditional & relational
 c = (a>b) ? a : b;
 // Compound assignment & increment
 a+=2;
 b = ++a;
 // What is the value of each variable?
 cout <<" a : " << a << '\n';
 cout <<" b : " << b << '\n';
 cout <<" c : " << c << '\n';
 cout <<" d : " << d << '\n';

}

Control flow

19

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Flow control instructions
Statement :

● Individual instructions of the program
● End with a semicolon (;)
● Executed in the order in which they appear in the program

Control instructions :
● Redirect the flow of a program
● Many types - some include :

○ if/else
○ Conditional operator (?)
○ switch
○ for loop / range based loops / while loops

20

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

if…else

if (x > 0)

 cout << "x is positive";

else if (x < 0)

 cout << "x is negative";

else

 cout << "x is 0";

21

● Syntax : if (condition) statement
○ condition is evaluated
○ If condition true, statement is

executed
● else and else if are optional
● else if can be repeated
● braces are optional if there is a

single instruction

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

switch
switch (oper) {
 case '+':
 cout << a + b;
 break;
 case '-':
 cout << a - b;
 break;
 case '*':
 cout << a * b;
 break;
 case '/':
 cout << a / b;
 break;
 default:
 cout << "Incorrect operator" ;
 break;
} 22

● Syntax :
switch(identifier) {
 case c1 : instructions1; break;
 case c2 : instructions2; break;
 …
 default : instructionsd; break;
}

● switch evaluates expression / checks if it
is equivalent to case c1

● If true, instructions1 are executed
● After break the program jumps to the end

of switch
● Execution carries on with the next case if

no break is present
● Default is optional

Let's add this to our
code on onlinegdb

https://www.onlinegdb.com/online_c++_compiler

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

for loop
 for (int n=10; n>0; n--) {

 cout << n << ", ";

 }

for (n=0, i=100 ; n!=i ; ++n, --i){

 cout << "n="<< n << " and i=" << i << "\n";

}

for(int i = 0, j = 0 ; i < 10 ; i++, j = 2*i)

 cout << "2*" << i << " is " << j << "\n";

23

Syntax :
for(initializations; condition; increments) {statement}

● Initializations and increments are separated by

a comma
● Initializations can contain declarations

start

condition

end

statement
True

False

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Range based loop Syntax :
for (type iterator : container) statement;
● iterates over all the elements in the

container
● simplifies loops tremendously especially

with STL container

24

string str {"Hello World!"};

for (char c : str)

{

 cout << "[" << c << "]";

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Range based loop Syntax :
for (type iterator : container) statement;
● iterates over all the elements in the

container
● simplifies loops tremendously especially

with STL container

25

string str {"Hello World!"};

for (char c : str)

{

 cout << "[" << c << "]";

}

Exercise : Lets try this out!
● Open a new window in onlinegdb
● Create an array with 5 elements -

your favorite integer numbers
● Calculate their sum using a range

based loop and print out the result!

https://www.onlinegdb.com/online_c++_compiler

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

While loop
Syntax :
while (condition) statement
● Condition evaluated before first

iteration
do statement while (condition);
● Condition evaluated after first

iteration

26

int n = 10;
while (n>0) {
 cout << n << ", ";
 --n;
}

int n = 10;
do {
 cout << n << ", ";
 --n;
} while (n>0);

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

While loop

27

start

condition

end

statement

False

True

start

condition

end

statement

While
● Statement is executed

after checking the
condition

● Similar to for loop
flowchart

Do — While
● Statement is always executed

once
● Condition is checked after the

statement is executed

True

False

Functions

28

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

What is a function
● Group of statements that is given a name and can be called from some point of the

program
● Allow to structure programs in segments of code
● Make code reusable

Syntax :
type name (parameter1, parameter2, ...) { statements }

- type : type of the value returned by the function.
- name : function identifier
- parameters : type followed by an identifier, (e.g. int parameter1) arguments are passed to
the function from the location where the function is called from.
- statements : block of statements surrounded by curly braces

29

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Some examples of functions
#include <iostream>
using namespace std;

int addition (int a, int b)
{
 int r;
 r=a+b;
 return r;
}

void print (int a)
{
 cout<<"The number is " <<a<<endl;
}

int main ()
{
 int z;
 z = addition (5,3);
 print(z);
} 30

Function that takes two arguments
and returns an integer

Function that takes one arguments
and returns nothing (void)

main function → program always
starts from main

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Function parameters

31

Function parameters can be passed :
● By value
● By reference

int addition (int a, int b)

{

 int r;

 r=a+b;

 return r;

}

int addition (int &a, int &b)

{

 int r;

 r=a+b;

 return r;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Function parameters

32

● Passed by value :
○ Parameters are copied into the

variables represented by the
function parameters

○ Modifications of these variables
within the function has no effect on
the values of the variables outside
the function

○ By default arguments are passed by
value (= copy, good for small types,
e.g. numbers)

int addition (int a, int b)

{

 int r;

 r=a+b;

 return r;

}

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Function parameters

33

int addition (int &a, int &b)

{

 int r;

 r=a+b;

 return r;

}

● Passed by reference :
○ also called pass by address
○ The parameters a and b are still local

to the function, but they are reference
variables (i.e. nicknames to the original
variables passed

○ Allows the function to modify a
variable without having to create a
copy of it

○ references are preferred to avoid
copies

○ const can be used for safety e.g.
■ int addition (const int &a)

■ Ensures that variable cannot be
changed

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Function parameters

34

● Passed by reference :
○ also called pass by address
○ The parameters a and b are still local

to the function, but they are reference
variables (i.e. nicknames to the original
variables passed

○ Allows the function to modify a
variable without having to create a
copy of it

○ references are preferred to avoid
copies

○ const can be used for safety e.g.
■ int addition (const int &a)

■ Ensures that variable cannot be
changed

Exercise : Lets try this out!
● Write a function that takes two

integer arguments and returns
nothing

● Change the value of each variable
to its square

● Print the values of the argument in
the main function

● Try passing the variables by value
and by reference - what do you
observe?

● Try making a variable const. What
do you observe?

Wrapping-up

35

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Overview of today's lecture
● Learnt about the history of C++ and why it is widely used
● Brushed up C++ core syntax
● Went through the different variables types & operators
● Were reminded of C++ flow control instructions & functions

36

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Tomorrow
● We will continue with :

○ Scopes / namespaces
○ Compound data types
○ Object Orientation
○ The C++ compilation chain

37

Back-up

38

TAC-HEP : GPU programming module – Charis Kleio Koraka - September 17th 2024

Resources
1. cplusplus docs link

2. cppreference docs link

3. CERN C++ course link

39

https://cplusplus.com/
https://en.cppreference.com/w/
https://indico.cern.ch/event/1019089/attachments/2208548/3917056/C++Course.pdf

