


overview

« yesterday we have seen

* what performance portability means and discovered the
Alpaka library

* how to set up Alpaka for a simple project
* how to compile a single source file for different back-ends
* what are Alpaka platforms, devices, queues and events

* today we will learn
* how to work with host and device memory
* how to write device functions and kernels

* how to use an Alpaka accelerator and work division to
launch a kernel

and see a complete example!

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

memory operations



Buffers and Views
* canrefer to memory on the host or on any device

- general purpose host memory (e.g. as returned by malloc or new)
- pinned host memory, visible by devices on a given platform (e.g. as returned by cudaMallocHost)
- global device memory (e.g. as returned by cudaMalloc)

* can have arbitrary dimensions

* 0-dimensional buffers and views wrap and provide access to a single element:

*buffer;
buffer->pt();

float x
float y

 1-dimensional buffers and views wrap and provide access to an array of elements:
float x = buffer[i];

* N-dimensional buffers and views wrap arbitrary memory areas:
float* p = std::data(buffer);

- expect a nicer accessor syntax with c++23 std: :mdspan and improved operator[]

- alpaka can already use experimental mdspan support based on https://github.com/kokkos/mdspan

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/kokkos/mdspan

memory buffers = -

* buffers own the memory they point to

* ahost memory buffer can use either standard host memory,
or pinned host memory mapped to be visible by the GPUs in a given platform

* abuffer knows what device the memory is on, and how to free it

* buffers have shared ownership of the memory
* like shared_ptr<T>
* making a copy of a buffer creates a second handle to the same underlying memory
 the memory is automatically freed when the last buffer object is destroyed (e.g. goes out of scope)
* with asyncor queue-ordered buffers, memory is freed when the work submitted to the queue associated
to the buffer is complete
* note that buffers always allow modifying their content
 aBuffer<const T>would not be useful, because its contents could never be set
* aconst Buffer<T>does not prevent changes to the contents, as they can be modified through a copy

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

buffer allocations and deallocations can be immediate or queue-ordered

immediate operations

— allocate and free the memory immediately
may result in a device-wide synchronisation
e.g.malloc / free or cudaMalloc / cudaFree

// allocate an array of "size" floats in standard host memory
auto buffer = alpaka::allocBuf<float, uint32_t>(host, size);

// allocate an array of "size" floats in pinned host memory
// mapped to be efficiently copiable to/from all the devices on the platform
auto buffer = alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

// allocate an array of "size" floats in global device memory
auto buffer = alpaka::allocBuf<float, uint32_t>(device, size);

queue-ordered operations are usually asynchronous, and may cache allocations
— guarantee that the memory is allocated before any further operations submitted to the queue are executed

guarantee that the memory will be freed once all pending operation in the queue are complete
e.g. cudaMallocAsync / cudaFreeAsync

// allocate an array of "size" floats in global gpu memory, ordered along queue
auto buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

available only on device that support it (CPUs, NVIDIA CUDA = 11.2, AMD ROCm = 5.4)

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

using buffers

| https://github.com/fwyzard/intro_to_alpaké/blob/masfer/alpéka/03_memory.

CcC

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) << '\n';

// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer =
alpaka::allocMappedBuf<float, uint32_ t>(host, platform, size);

std: :cout

<< "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values

for (uint32_t 1 = 0; 1 < size; ++i) {
host_buffer[i] = 1;

}

// initialise the accelerator platform

Platform platform;

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);

std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

{
// allocate a buffer of floats in global device memory, asynchronously

auto device_buffer = . .
alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

// wait for all operations to complete
alpaka: :wait(queue);

// read the content of the host buffer
for (uint32_ t 1 = 0; 1 < size; ++i1) {

std::cout << host_buffer[i] << .

}

November 7th, 2024

A. Bocci - Anintroduction to Alpaka - part 2



https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

| https://github.com/fwyzard/intro_to_alpaké/blob/masfer/alpéka/03_memory.

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) << '\n';

// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer =
alpaka::allocMappedBuf<float, uint32_ t>(host, platform, size);

std: :cout

<< "pinned host memory bufferAt " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values \\1\21%%%WW
for (uint32_t 1 = 0; 1 < size; ++i) { T

host_buffer[i] = i; \\\\\\\ —
} Ve
!

// initialise the accelerator platform allocate bUFF(

Platform platform;
// use the first device
Device device = alpaka::getDevByIdx(platform, Qu);

std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

124

{
// allocate a buffer of floats in global device memory, asynchronously

auto device_buffer = . .
alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

std::cout << "memory buffe‘on "
<< alpaka::getName(alpaka::getDev(device_buffer))
<< " at " << stdﬁ:data(device_buffer) << "\n\n";
//
// set the device memory/to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

// copy the comtents of the device buffer to the host buffer
J/glpakaffﬁéhcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

// wait for all operations to complete
alpaka: :wait(queue);

// read the content of the host buffer
for (uint32_ t 1 = 0; 1 < size; ++i1) {

std::cout << host_buffer[i] << .

}

November 7th, 2024

A. Bocci - Anintroduction to Alpaka - part 2



https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

| https://github.com/fwyzard/intro_to_alpaké/blob/maéter

/ E‘_..-w e

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) << '\n';

// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer =
alpaka::allocMappedBuf<float, uint32_ t>(host, platform, size);

std::cout
<< "pinned host memory buffer at " <<[std::data(host_buffer)]<< "\n\n";

// fill the host buffers with values _—
for (uint32_t 1 = 0; 1 < size; ++i) { ///
host_buffer[i] = 1i; ;

} get the buffers’ memory addresses

// initialise the accelerator platform

Platform platform;

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);

std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

{
// allocate a buffer of floats in global device memory, asynchronously

auto device_buffer = . .
alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device buffer))

<< " at " <<Istd::data(device_buffer)]<< "\n\n";

// set the device memory to al%/zégts (byte-wise, not element-wise)
alpaka::memset(queue,/ggyicegﬁhffer, 0x00);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

}

// wait for all operations to complete
alpaka: :wait(queue);

// read the content of the host buffer
for (uint32_ t 1 = 0; 1 < size; ++i1) {

std::cout << host_buffer[i] << .

}

November 7th, 2024

A. Bocci - Anintroduction to Alpaka - part 2

/alpaka/03 memory.cc



https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

using buffers

| https://github.com/fwyzard/intro_to_alpaké/blob/maéter

/ E‘_..-w e

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) << '"\n';
// allocate a buffer of floats in pinned host memory
uint32_t size = 42;

auto host_buffer =
alpaka::allocMappedBuf<float, uint32_ t>(host, platform, size);

std::cout
<< "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values
for (uint32 t 1 = 0; 1 < size; ++i) {
[host_buffer[i] = '1;](770

the host buffer

// initialise the accelerator platform

Platform platform;

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);

std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

write to and read from

} like a vector or array

November 7th, 2024

{
// allocate a buffer of floats in global device memory, asynchronously

auto device_buffer = . .
alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
{ once all enqueued operations have completed
} \\

// waﬁt for all operations to complete
alpak#::wait(queue);

\

\\
// read, the content of the host buffer

for (uint32_ t 1 = 0; 1 < size; ++i1) {

std::cout M| host_buffer[i]|<< ' ';

}

A. Bocci - Anintroduction to Alpaka - part 2

/alpaka/03 memory.cc



https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

https //github.com/fwyzard/intro_to alpaka/blob/master/alpaka/03 memory.cc

// use the single host device
HostPlatform host_platform;

Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) <<

// allocate a buffer of floats in pinned host memory
uint32_t size = 42;
auto host_buffer

std: :cout

// fill the host buffers with values
for (uint32_t 1 = 0; 1 < size; ++i) {
host_buffer[i] = i;

// initialise the accelerator platform

Platform platform;

// use the first device

Device device = alpaka::getDevByIdx(platform, Qu);
std::cout << "Device: " << alpaka::getName(device) <<

// create a work queue
Queue queue{device};

"\n';

alpaka: allocMaBpedBuf<float, uint32_t>(host, platform, size);

<< "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

/

«

} memset and memcpy operatlo
are always asynchronous

"\n';

November 7th, 2024

{
// allocate a buffer of floats in global device memory, asynchronously

auto device_buffer
alpaka: aTlocAsyncBuf<float, uint32_t>(queue, size);

std::cout << "memory buffer on
<< alpaka::getName(alpaka: :getDev(device buffer))
<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)

—)[ alpaka: :memset(queue, device_buffer, OXOO)]

// copy the contents of the device buffer to the host buffer

*)[ alpaka: :memcpy(queue, host_buffer, dev'lce_buffer)]

[—// the device buffer goes out of scope, but the memory is freed only

f‘ nce all enqueued operations have completed

}

\
// wait Nr all operations to complete
[alpaka::wait(queue)l

// read the content of the host buffer
for (uint32_ t 1 = 0; 1 < size; ++i1) {

std::cout << host_buffer[i] << .

A. Bocci - Anintroduction to Alpaka - part 2



https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

memory views

* views wrap memory allocated by some other mechanism to provide a common interface
* e.g.alocal variable on the stack, or memory owned by an std: :vector
* views do not own the underlying memory
* the lifetime of a view should not exceed that of the memory it points to

float* data = new float[size];
auto view = alpaka::createView(host, data, size); // define a view for a C++ array
alpaka: :memcpy(queue, view, device_buffer); // copy the data to the array

* views to standard containers
* Alpaka provides adaptors and can automatically use std: :array<T, N>and std::vector<T> as views

std::vector<float> data(size);
alpaka: :memcpy(queue, data, device_buffer); // copy the data to the vector

* using views to emulate buffers to constant objects
* buffers always allow modifying their content
* but we can wrap them in a constant view: alpaka: :ViewConst<Buffer<T>>

auto const_view = alpaka::ViewConst(device_buffer);
alpaka: :memcpy(queue, host_buffer, const_view); // copy the data to the host

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

using views

| https://github.com/fwyzard/intro_to_alpaka/bldb/maéter/alpaka/04_views.

= =

]

CC

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) << '"\n';
// initialise the accelerator platform

Platform platform;

// allocate a buffer of floats in mapped host memory

uint32_t size = 42;

std::vector<float> host_data(size);

std::cout << "host vector at " << std::data(host_data) << "\n\n";

// fill the host buffers with values

for (uint32_ t 1 = 0; 1 < size; ++i) {
host_data[i] = i;

}

// use the first device
Device device = alpaka::getDevByIdx(platform, Ou);
std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

{
// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);
std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

/| create a read-only view to the device data
auto const_view = alpaka::ViewConst(device_buffer);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_data, const_view);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed
// wait for all operations to complete

alpaka: :wait(queue);

// read the content of the host buffer
for (uint32_t 1 = 0; 1 < size; ++1) { std::cout << host_data[i] << ' '; }

November 7th, 2024

A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

using views

https //github.com/fwyzard/intro_to alpaka/blob/master/alpaka/04 views.cc

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) << '\n';

// initialise the accelerator platform
Platform platform;

// allocate a buffer of floats in mapped host memory
uint32_t size = 42;
[std :vector<float> host data(stze)]( —_—

std::cout << "host vector at " << std: data(host‘Hétag\j:\“\n\n"'
// fill the host buffers with values

host_data[i] = i; \‘/—

y use a vector directly

// use the first device
Device device = alpaka::getDevByIdx(platform, Ou);
std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

for (uint32_ t 1 = 0; 1 < size; ++i) { \ I

November 7th, 2024

{

// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);
std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

/| create a read-only view to the device data
auto const_view = alpaka::ViewConst(device_buffer);

// copy the contents of the device buffer to the host buffer
————alpaka::memcpy(queul| host_data} const_view);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

}

// wait for all operations to complete
alpaka: :wait(queue);

// read the content of the host buffer
for (uint32_t 1 = 0; 1 < size; ++1) { std::cout << host_data[i] << ' '; }

A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

using views

| https://github.com/fwyzard/intro_to_alpaka/blob/méste

7 =
r/alpaka/04_v

=~
iews.

CC

// use the single host device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);
std::cout << "Host: " << alpaka::getName(host) << '"\n';
// initialise the accelerator platform

Platform platform;

// allocate a buffer of floats in mapped host memory

uint32_t size = 42;

std::vector<float> host_data(size);

std::cout << "host vector at " << std::data(host_data) << "\n\n";

// fill the host buffers with values
for (uint32_ t 1 = 0; 1 < size; ++i) {

host_data[i] = i; copy from a constant view

the device buffer

// use the first device
Device device = alpaka::getDevByIdx(platform, Ou);
std::cout << "Device: " << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

} to garantee not changing e~

{
// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);
std::cout << "memory buffer on "

<< alpaka::getName(alpaka: :getDev(device buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffer, 0x00);

// create a read-only view to the device data
auto const_view = alpaka::ViewConst(device_buffer)}

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_data, ;

»444#7Lthe*devtte*bUff€F7§6§§#Bﬂ£/6? scope, but the memory is freed only
// once all enqueued operations have completed

}

// wait for all operations to complete
alpaka: :wait(queue);

// read the content of the host buffer
for (uint32_t 1 = 0; 1 < size; ++1) { std::cout << host_data[i] << ' '; }

November 7th, 2024

A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

alfsalka device API



alpaka device functions:

device functions
* device functions are marked with the ALPAKA_FN_ACC macro

ALPAKA_FN_ACC
float my_func(float arg) { .. }

* backend-specific functions

— ifthe implementation of a device function may depend on the backend or on the work division into groups and threads,
it should be templated on the Accelerator type, and take an Accelerator object

template <typename TAcc>
ALPAKA_FN_ACC
float my_func(TAcc const& acc, float arg) { .. }

the availability of C++ features depends on the backend and on the device compiler
— dynamic memory allocation is (partially) supported, but strongly discouraged
c++ std containers should be avoid
exceptions are usually not supported
recursive functions are supported only by some backends (CUDA: yes, but often inefficient; SYCL: no)
~—  c++20is available in CUDA code only starting from CUDA 12.0
Shadelr,

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

examples:

* mathematical operations are similar to what is available in the c++ standard:
S~
alpaka::math::sin(acc, arg)
* atomic operations are similar to what is available in CUDA and HIP
—helg)
alpaka::atomicAdd(acc, T* address, T value, alpaka::hierarchy::Blocks)
« warp-level functions are similar to what is available in CUDA and HIP

- eg.
alpaka::warp::ballot(acc, arg)

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

alpalka kernels

kernels

* areimplemented as an ALPAKA_FN_ACC void operator()(..) const function of a dedicated struct or
class

- kernels never return anything: -> void
- kernels cannot change any data member on the host: must be declared const

« are always templated on the accelerator type, and take an accelerator object as the first argument

struct Kernel {
template <typename TAcc>
ALPAKA_FN_ACC void operator()(
TAcc const& acc,
float const* in1, float const* in2, float* out, size t size) const

{

,
i

* the TAcc acc argument identifies the backend and provides the details of the work division

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

* alpaka maintains the work division into blocks and threads used in CUDA and OpenCL:

* akernel launch is divided into a grid of blocks
- thevarious block are scheduled independently, so they may be running concurrently or at different times

- operations in different blocks cannot be synchronised
- operations in different blocks can communicate only through the device global memory
» each blockis composed of threads running in parallel
- threadsin a block tend to run concurrently, but may diverge or be scheduled independently from each other
- operationsin a block can be synchronised, e.g. with alpaka: : syncBlockThreads(acc);
- operationsin a block can communicate through shared memory
* blocks can be decomposed into sub-groups, i.e. warps

- threads in the same warp can synchronise and exchange data using more efficient primitives

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

* to support efficient algorithms running on a CPU, alpaka introduces an additional level in
the execution hierarchy: elements

 each threadin a block may process multiple consecutive elements

* CPU backends usually run with multiple elements per thread

- agood choice might be 16 elements, so 16 consecutive integers or floats can be loaded into a cache line

- in principle, this could allow a host compiler to auto-vectorise the code, but more testing and development is needed!
* GPU backends usually run with a single element per thread

- memory accesses are already coalesced at the warp level

- inprinciple, 2 elements per thread could be used with short or float16 data

* kernel should be written to allow for different number of elements per thread

 acommon approach is to use
- N blocks, M threads per block, 1 element per thread on a GPU
- N blocks, 1 thread per block, M elements per thread on a CPU

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

* alpaka provides helper to implement a N-dimensional strided loops
* thelaunch grid is tiled and repeated as many times as needed to cover the problem size

* thisis usually an efficient approach when all threads can work independently

struct Kernel {

template <typename TAcc>
ALPAKA_FN_ACC void operator()(

TAcc const& acc,

float const* in1l, float const* in2, float* out, size t size) const
{

for (auto index : alpaka::uniformElements(acc, size)) {

out[index] = in1[index] + in2[index];

}
%

* also available For N-dimensional loops

for (auto ndindex : alpaka::uniformElementsND(acc, {z,y,x})) { ... }

» split across different dimensions, for non-uniform blocks, etc.

 for more complicated cases, use the alpaka: :getWorkDiv and alpaka::getIdx functions

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

launching kernels



Accelerator

* describes "how" a kernel runs on a device
- N-dimensional work division (1D, 2D, 3D, ...)
- onthe CPU, serial vs parallel execution at the thread and block level (single thread, multi-threads, TBB tasks, ...)
- implementation of shared memory, atomic operations, etc.

the Accelerator c++ type is available only when alpaka is being compiled for a specific back-end
- the accelerator type can be used to specialise code and implement per-accelerator behaviour

- For example, an algorithm can be implemented in device code using a parallel approach for
a GPU-based accelerator, and a serial approach for a CPU-based accelerator

accelerator objects are created when a kernel is executed, and can only be accessed in device code
- each device function can (should) be templated on the accelerator type, and take an accelerator as its first argument
- the accelerator object can be used to extract the execution configuration (blocks, threads, elements)

Tag

identifies an Accelerator back-end, without the hardware and work division details
- e.g. TagCpuSerial, TagGpuCudaRt, TagGpuHipRt, ...

unlike the Accelerator, the Tag C++ type is always available

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

* akernel launch requires
* the type of the accelerator where the kernel will run

* the queue to submit the work to

* the work division into blocks, threads, and elements
* aninstance of the type that implements the kernel
* the arguments to the kernel Function

 we provide some helper types and functions
 config.hincludes the aliases Acc1D, Acc2D, Acc3D for 1D, 2D and 3D kernels
* WorkDiv.hpp provides the helper function makeWorkDiv<TAcc>(blocks, threads_or_elements)

- taken from Alpaka tests

// launch a 1-dimensional kernel with 32 groups of 32 threads (GPU) or elements (CPU)
auto grid = makeWorkDiv<Acc1D>(32, 32);
alpaka: :exec<Acc1D>(queue, grid, Kernel{}, a.data(), b.data(), sum.data(), size);

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

a complete alpaka example



) https: ithub.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05 kernel.cc
* running on the CPU Ps://9 [Twyzard/tntro_to_alpaka/blob/ falpaka/0s_

$ ./05 kernel_cpu

Host: AMD EPYC 7352 24-Core Processor

Device:

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (1) threads x (32) elements...

success

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (1) threads x (32) elements...

success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4) elements...
success

* running on the GPU

$ ./05 kernel _cuda

Host: AMD EPYC 7352 24-Core Processor

Device:

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1) elements...
success

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2 27 /35


https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05_kernel.cc

alpalka on different back-ends



» parallel CPU back-end, using the Intel Threading Building Blocks library

g++ -std=c++17 -02 -g -pthread \
-1 /include -D
05_kernel.cc \
-0 05_kernel_tbb

$ ./05_kernel_tbb

Host: AMD EPYC 7352 24-Core Processor

Device:

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (1) threads x (32) elements...

success

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (1) threads x (32) elements...

success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4) elements...
success

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2 29/ 35


https://creativecommons.org/licenses/by-sa/4.0/

 AMD GPUs, using the HIP/ROCm runtime back-end

hipcc -std=c++17 -02 -g -pthread \
-1 /include -D
05_kernel.cc \
-0 05_kernel_hip

$ ./05_kernel_hip

Host: AMD EPYC 7A53 64-Core Processor

Device:

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1) elements...
success

Alpaka on the LUMI supercomputer !

November 7th, 2024 A. Bocci - Anintroduction to Alpaka - part 2 30/35


https://creativecommons.org/licenses/by-sa/4.0/

Intel GPUs, using the oneAPI back-end

icpx -fsycl -std=c++17 -02 -g -pthread \
-1 /include -D
05_kernel.cc \
-0 05_kernel_sycl

$ ./05_kernel_sycl

Host: Intel(R) Xeon(R) Platinum 8480+

Device:

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1) elements...
success

Alpaka on the Aurora supercomputer ?

November 7th, 2024 A.Bocdi - An introduction to Alpaka - part 2 31/35


https://creativecommons.org/licenses/by-sa/4.0/

summary



summary

during the first part we learned
* what performance portability means and discovered the Alpaka library

* how to set up Alpaka for a simple project
* how to compile a single source file for different back-ends
* what are Alpaka platforms, devices, queues and events

* today we learned
* how to work with host and device memory
* how to write device functions and kernels
* how to use an Alpaka accelerator and work division to launch a kernel
* andsee a complete example !

* congratulations!
* now you can write portable and performant applications

A. Bocci - Anintroduction to Alpaka - part 2


https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?



CERN

Copyright CERN 2024
Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0


https://creativecommons.org/licenses/by-sa/4.0/

