
An introduction to
part 2 – November 7th, 2024

Andrea Bocci
CERN - EP/CMD

last updated November 7th, 2024

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 2 / 35

overview

● yesterday we have seen
● what performance portability means and discovered the

Alpaka library
● how to set up Alpaka for a simple project
● how to compile a single source file for different back-ends
● what are Alpaka platforms, devices, queues and events

● today we will learn
● how to work with host and device memory
● how to write device functions and kernels
● how to use an Alpaka accelerator and work division to

launch a kernel
● and see a complete example !

https://creativecommons.org/licenses/by-sa/4.0/

memory operations

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 4 / 35

memory in alpaka

Buffers and Views
● can refer to memory on the host or on any device

– general purpose host memory (e.g. as returned by malloc or new)

– pinned host memory, visible by devices on a given platform (e.g. as returned by cudaMallocHost)

– global device memory (e.g. as returned by cudaMalloc)

● can have arbitrary dimensions
● 0-dimensional buffers and views wrap and provide access to a single element:

● 1-dimensional buffers and views wrap and provide access to an array of elements:

● N-dimensional buffers and views wrap arbitrary memory areas:

– expect a nicer accessor syntax with c++23 std::mdspan and improved operator[]

– alpaka can already use experimental mdspan support based on https://github.com/kokkos/mdspan

float x = *buffer;
float y = buffer->pt();

float x = buffer[i];

float* p = std::data(buffer);

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/kokkos/mdspan

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 5 / 35

memory buffers

● buffers own the memory they point to
● a host memory buffer can use either standard host memory,

or pinned host memory mapped to be visible by the GPUs in a given platform
● a buffer knows what device the memory is on, and how to free it

● buffers have shared ownership of the memory
● like shared_ptr<T>
● making a copy of a buffer creates a second handle to the same underlying memory
● the memory is automatically freed when the last buffer object is destroyed (e.g. goes out of scope)
● with async or queue-ordered buffers, memory is freed when the work submitted to the queue associated

to the buffer is complete

● note that buffers always allow modifying their content
● a Buffer<const T> would not be useful, because its contents could never be set
● a const Buffer<T> does not prevent changes to the contents, as they can be modified through a copy

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 6 / 35

● buffer allocations and deallocations can be immediate or queue-ordered
● immediate operations

– allocate and free the memory immediately
– may result in a device-wide synchronisation
– e.g. malloc / free or cudaMalloc / cudaFree

● queue-ordered operations are usually asynchronous, and may cache allocations
– guarantee that the memory is allocated before any further operations submitted to the queue are executed
– guarantee that the memory will be freed once all pending operation in the queue are complete
– e.g. cudaMallocAsync / cudaFreeAsync

– available only on device that support it (CPUs, NVIDIA CUDA ≥ 11.2, AMD ROCm ≥ 5.4)

allocating memory

// allocate an array of "size" floats in standard host memory
auto buffer = alpaka::allocBuf<float, uint32_t>(host, size);

// allocate an array of "size" floats in pinned host memory
// mapped to be efficiently copiable to/from all the devices on the platform
auto buffer = alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

// allocate an array of "size" floats in global device memory
auto buffer = alpaka::allocBuf<float, uint32_t>(device, size);

// allocate an array of "size" floats in global gpu memory, ordered along queue
auto buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 7 / 35

using buffers

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 8 / 35

using buffers

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

allocate buffers

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 9 / 35

using buffers

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

get the buffers’ memory addresses

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 10 / 35

using buffers

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

write to and read from
the host buffer

like a vector or array

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 11 / 35

using buffers

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // allocate a buffer of floats in pinned host memory

 uint32_t size = 42;

 auto host_buffer =
 alpaka::allocMappedBuf<float, uint32_t>(host, platform, size);

 std::cout
 << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_buffer[i] = i;

 }

 // initialise the accelerator platform

 Platform platform;

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer =
 alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_buffer, device_buffer);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) {

 std::cout << host_buffer[i] << ' ';

 }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

memset and memcpy operations
are always asynchronous

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 12 / 35

memory views

● views wrap memory allocated by some other mechanism to provide a common interface
● e.g. a local variable on the stack, or memory owned by an std::vector
● views do not own the underlying memory
● the lifetime of a view should not exceed that of the memory it points to

● views to standard containers
● Alpaka provides adaptors and can automatically use std::array<T, N> and std::vector<T> as views

● using views to emulate buffers to constant objects
● buffers always allow modifying their content
● but we can wrap them in a constant view: alpaka::ViewConst<Buffer<T>>

float* data = new float[size];
auto view = alpaka::createView(host, data, size); // define a view for a C++ array
alpaka::memcpy(queue, view, device_buffer); // copy the data to the array

std::vector<float> data(size);
alpaka::memcpy(queue, data, device_buffer); // copy the data to the vector

auto const_view = alpaka::ViewConst(device_buffer);
alpaka::memcpy(queue, host_buffer, const_view); // copy the data to the host

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 13 / 35

using views

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // initialise the accelerator platform

 Platform platform;

 // allocate a buffer of floats in mapped host memory

 uint32_t size = 42;

 std::vector<float> host_data(size);

 std::cout << "host vector at " << std::data(host_data) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_data[i] = i;

 }

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // create a read-only view to the device data

 auto const_view = alpaka::ViewConst(device_buffer);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_data, const_view);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) { std::cout << host_data[i] << ' '; }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 14 / 35

using views

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // initialise the accelerator platform

 Platform platform;

 // allocate a buffer of floats in mapped host memory

 uint32_t size = 42;

 std::vector<float> host_data(size);

 std::cout << "host vector at " << std::data(host_data) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_data[i] = i;

 }

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // create a read-only view to the device data

 auto const_view = alpaka::ViewConst(device_buffer);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_data, const_view);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) { std::cout << host_data[i] << ' '; }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

use a vector directly

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 15 / 35

using views

 // use the single host device

 HostPlatform host_platform;

 Host host = alpaka::getDevByIdx(host_platform, 0u);

 std::cout << "Host: " << alpaka::getName(host) << '\n';

 // initialise the accelerator platform

 Platform platform;

 // allocate a buffer of floats in mapped host memory

 uint32_t size = 42;

 std::vector<float> host_data(size);

 std::cout << "host vector at " << std::data(host_data) << "\n\n";

 // fill the host buffers with values

 for (uint32_t i = 0; i < size; ++i) {

 host_data[i] = i;

 }

 // use the first device

 Device device = alpaka::getDevByIdx(platform, 0u);

 std::cout << "Device: " << alpaka::getName(device) << '\n';

 // create a work queue

 Queue queue{device};

 {

 // allocate a buffer of floats in global device memory, asynchronously

 auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

 std::cout << "memory buffer on "

 << alpaka::getName(alpaka::getDev(device_buffer))

 << " at " << std::data(device_buffer) << "\n\n";

 // set the device memory to all zeros (byte-wise, not element-wise)

 alpaka::memset(queue, device_buffer, 0x00);

 // create a read-only view to the device data

 auto const_view = alpaka::ViewConst(device_buffer);

 // copy the contents of the device buffer to the host buffer

 alpaka::memcpy(queue, host_data, const_view);

 // the device buffer goes out of scope, but the memory is freed only

 // once all enqueued operations have completed

 }

 // wait for all operations to complete

 alpaka::wait(queue);

 // read the content of the host buffer

 for (uint32_t i = 0; i < size; ++i) { std::cout << host_data[i] << ' '; }

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

copy from a constant view
to garantee not changing

the device buffer

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc

alpaka device API

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 17 / 35

alpaka device functions

device functions
● device functions are marked with the ALPAKA_FN_ACC macro

● backend-specific functions
– if the implementation of a device function may depend on the backend or on the work division into groups and threads,

it should be templated on the Accelerator type, and take an Accelerator object

● the availability of C++ features depends on the backend and on the device compiler
– dynamic memory allocation is (partially) supported, but strongly discouraged
– c++ std containers should be avoid
– exceptions are usually not supported
– recursive functions are supported only by some backends (CUDA: yes, but often inefficient; SYCL: no)
– c++20 is available in CUDA code only starting from CUDA 12.0
– etc.

template <typename TAcc>
ALPAKA_FN_ACC
float my_func(TAcc const& acc, float arg) { … }

ALPAKA_FN_ACC
float my_func(float arg) { … }

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 18 / 35

alpaka device functions

examples:
● mathematical operations are similar to what is available in the c++ standard:

– e.g.

alpaka::math::sin(acc, arg)

● atomic operations are similar to what is available in CUDA and HIP
– e.g.

alpaka::atomicAdd(acc, T* address, T value, alpaka::hierarchy::Blocks)

● warp-level functions are similar to what is available in CUDA and HIP
– e.g.

alpaka::warp::ballot(acc, arg)

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 19 / 35

alpaka kernels

kernels
● are implemented as an ALPAKA_FN_ACC void operator()(…) const function of a dedicated struct or

class
– kernels never return anything: -> void

– kernels cannot change any data member on the host: must be declared const

● are always templated on the accelerator type, and take an accelerator object as the first argument

● the TAcc acc argument identifies the backend and provides the details of the work division

struct Kernel {
 template <typename TAcc>
 ALPAKA_FN_ACC void operator()(
 TAcc const& acc,
 float const* in1, float const* in2, float* out, size_t size) const
 {
 ...
 }
};

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 20 / 35

alpaka: grids, blocks, threads …

● alpaka maintains the work division into blocks and threads used in CUDA and OpenCL:
● a kernel launch is divided into a grid of blocks

– the various block are scheduled independently, so they may be running concurrently or at different times

– operations in different blocks cannot be synchronised

– operations in different blocks can communicate only through the device global memory

● each block is composed of threads running in parallel
– threads in a block tend to run concurrently, but may diverge or be scheduled independently from each other

– operations in a block can be synchronised, e.g. with alpaka::syncBlockThreads(acc);

– operations in a block can communicate through shared memory

● blocks can be decomposed into sub-groups, i.e. warps
– threads in the same warp can synchronise and exchange data using more efficient primitives

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 21 / 35

… and elements ?

● to support efficient algorithms running on a CPU, alpaka introduces an additional level in
the execution hierarchy: elements

● each thread in a block may process multiple consecutive elements
● CPU backends usually run with multiple elements per thread

– a good choice might be 16 elements, so 16 consecutive integers or floats can be loaded into a cache line

– in principle, this could allow a host compiler to auto-vectorise the code, but more testing and development is needed !

● GPU backends usually run with a single element per thread
– memory accesses are already coalesced at the warp level

– in principle, 2 elements per thread could be used with short or float16 data

● kernel should be written to allow for different number of elements per thread
● a common approach is to use

– N blocks, M threads per block, 1 element per thread on a GPU

– N blocks, 1 thread per block, M elements per thread on a CPU

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 22 / 35

a simple strided loop

● alpaka provides helper to implement a N-dimensional strided loops
● the launch grid is tiled and repeated as many times as needed to cover the problem size
● this is usually an efficient approach when all threads can work independently

● also available for N-dimensional loops

● split across different dimensions, for non-uniform blocks, etc.

● for more complicated cases, use the alpaka::getWorkDiv and alpaka::getIdx functions

struct Kernel {
 template <typename TAcc>
 ALPAKA_FN_ACC void operator()(
 TAcc const& acc,
 float const* in1, float const* in2, float* out, size_t size) const
 {
 for (auto index : alpaka::uniformElements(acc, size)) {
 out[index] = in1[index] + in2[index];
 }
 }
};

 for (auto ndindex : alpaka::uniformElementsND(acc, {z,y,x})) { ... }

https://creativecommons.org/licenses/by-sa/4.0/

launching kernels

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 24 / 35

alpaka: work submission

Accelerator
● describes “how” a kernel runs on a device

– N-dimensional work division (1D, 2D, 3D, …)

– on the CPU, serial vs parallel execution at the thread and block level (single thread, multi-threads, TBB tasks, …)

– implementation of shared memory, atomic operations, etc.

● the Accelerator c++ type is available only when alpaka is being compiled for a specific back-end
– the accelerator type can be used to specialise code and implement per-accelerator behaviour

– for example, an algorithm can be implemented in device code using a parallel approach for
a GPU-based accelerator, and a serial approach for a CPU-based accelerator

● accelerator objects are created when a kernel is executed, and can only be accessed in device code
– each device function can (should) be templated on the accelerator type, and take an accelerator as its first argument

– the accelerator object can be used to extract the execution configuration (blocks, threads, elements)

Tag
● identifies an Accelerator back-end, without the hardware and work division details

– e.g. TagCpuSerial, TagGpuCudaRt, TagGpuHipRt, …

● unlike the Accelerator, the Tag C++ type is always available

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 25 / 35

launching a kernel

● a kernel launch requires
● the type of the accelerator where the kernel will run
● the queue to submit the work to
● the work division into blocks, threads, and elements
● an instance of the type that implements the kernel
● the arguments to the kernel function

● we provide some helper types and functions
● config.h includes the aliases Acc1D, Acc2D, Acc3D for 1D, 2D and 3D kernels
● WorkDiv.hpp provides the helper function makeWorkDiv<TAcc>(blocks, threads_or_elements)

– taken from Alpaka tests

// launch a 1-dimensional kernel with 32 groups of 32 threads (GPU) or elements (CPU)
auto grid = makeWorkDiv<Acc1D>(32, 32);
alpaka::exec<Acc1D>(queue, grid, Kernel{}, a.data(), b.data(), sum.data(), size);

https://creativecommons.org/licenses/by-sa/4.0/

a complete alpaka example

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 27 / 35

● running on the CPU

● running on the GPU

a complete alpaka example

$./05_kernel_cpu
Host: AMD EPYC 7352 24-Core Processor
Device: AMD EPYC 7352 24-Core Processor
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (1) threads x (32) elements...
success
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (1) threads x (32) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4) elements...
success

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05_kernel.cc

$./05_kernel_cuda
Host: AMD EPYC 7352 24-Core Processor
Device: Tesla T4
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1) elements...
success

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05_kernel.cc

alpaka on different back-ends

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 29 / 35

● parallel CPU back-end, using the Intel Threading Building Blocks library

parallel execution on CPUs

$./05_kernel_tbb
Host: AMD EPYC 7352 24-Core Processor
Device: AMD EPYC 7352 24-Core Processor
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (1) threads x (32) elements...
success
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (1) threads x (32) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4) elements...
success

g++ -std=c++17 -O2 -g -pthread \
 -I$ALPAKA_BASE/include -DALPAKA_ACC_CPU_B_TBB_T_SEQ_ENABLED -ltbb \
 05_kernel.cc \
 -o 05_kernel_tbb

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 30 / 35

● AMD GPUs, using the HIP/ROCm runtime back-end

offloading to AMD GPUs

$./05_kernel_hip
Host: AMD EPYC 7A53 64-Core Processor
Device: AMD Instinct MI250X
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1) elements...
success

hipcc -std=c++17 -O2 -g -pthread \
 -I$ALPAKA_BASE/include -DALPAKA_ACC_GPU_HIP_ENABLED \
 05_kernel.cc \
 -o 05_kernel_hip

Alpaka on the LUMI supercomputer !

https://creativecommons.org/licenses/by-sa/4.0/

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 31 / 35

● Intel GPUs, using the oneAPI back-end

offloading to Intel GPUs

$./05_kernel_sycl
Host: Intel(R) Xeon(R) Platinum 8480+
Device: Intel(R) Data Center GPU Max 1100
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel1D with vector indices with a grid of (32) blocks x (32) threads x (1) elements...
success
Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1) elements...
success

icpx -fsycl -std=c++17 -O2 -g -pthread \
 -I$ALPAKA_BASE/include -DALPAKA_ACC_SYCL_ENABLED -DALPAKA_SYCL_ONEAPI_GPU \
 05_kernel.cc \
 -o 05_kernel_sycl

Alpaka on the Aurora supercomputer ?

https://creativecommons.org/licenses/by-sa/4.0/

summary

November 7 , 2024ᵗʰ A. Bocci - An introduction to Alpaka - part 2 33 / 35

summary
● during the first part we learned

● what performance portability means and discovered the Alpaka library
● how to set up Alpaka for a simple project
● how to compile a single source file for different back-ends
● what are Alpaka platforms, devices, queues and events

● today we learned
● how to work with host and device memory
● how to write device functions and kernels
● how to use an Alpaka accelerator and work division to launch a kernel
● and see a complete example !

● congratulations!
● now you can write portable and performant applications

https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

Copyright CERN 2024

Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

