

who am |

* Dr. Andrea Bocci <andrea.bocci@cern.ch>, @fwyzard on Mattermost
* applied physicist working on the CMS experiment for over 20 years
* at CERNsince 2010

* I've held various roles related to the High Level Trigger
— started out as the b-tagging HLT contact
— joined as (what today is called) HLT STORM convener
— deputy Trigger Coordinator and Trigger Coordinator
~— HLT Upgrade convener, and editor for the DAQ and HLT Phase-2 TDR
— currently, “GPU Trigger Officer”

* for the last 6 years, I've been working on GPUs and performance portability
~ together with a few colleagues at CERN and Fermilab
- “Patatrack” pixel track and vertex reconstruction running on GPUs
— R&D projects on CUDA, Alpaka, SYCL and Intel oneAPI
— support for CUDA, HIP/ROCm, and Alpaka in CMSSW
~— Patatrack Hackathons!

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
mailto:andrea.bocci@cern.ch
https://mattermost.web.cern.ch/cms-exp/messages/@fwyzard

performance portability

 what do we mean by software portability ?

* the possibility of running a software application or library on different platforms
- different hardware architectures, different operating systems

- e.g. Windows running on x86, OSX running on ARM, Linux running on RISC-V, etc.

 how do we achieve software portability?
* write software using a standardised language
- C++, python, Java, etc.
* use standard features
- |IEEE floating point numbers
* use standard or portable libraries

- C++standard library, Boost, Eigen, etc.

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* forexample

https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/00_hello_world.cc
#include <cmath>]

#include <cstdio>
void print_sqrt(double x) {

printf("The square root of %g is %g\n", x, std::sqrt(x));

int main() {
print_sqrt(2.);

should behave in the same way on all platforms that support a standard C++ compiler:

The square root of 2 is 1.41421

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/00_hello_world.cc

e writing a program that offloads some of the computations to a GPU is somewhat
different from writing a program that runs just on the CPU

* inside a single application ...

« ... different hardware architectures

* ...different memory spaces

» ... different way to call a function or launch a task
* ... different optimal algorithms

* ...different compilers

* ...different programming languages'!

* sometimes it may help to think about a GPU like programming a remote machine
» compile for completely different targets
* launching a kernel is similar to running a complete program!

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

= portability: the same exa n

#include <cmath> https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/01_hello_world.cu
#include <cstdio>
#include <cuda_runtime.h>

__device__ I
voild print_sqrt(double x) {

printf("The square root of %g is %g\n", x, std::sqrt(x));
}

__global__
voild kernel() {
print_sqrt(2.);

}
int main() {
kernel<<<1, 1>>>();
cudaDeviceSynchronize(); I

}

The square root of 2 is 1.41421

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/01_hello_world.cu

#include <cmath>
.) <
#include <cstdio>
voild print_sqrt(double x) {
printf("The square root of %g is %g\n", x, std::sqrt(x)); |«
}
int main() {
print_sqrt(2.); A
} e

The square root of 2 is 1.41421

 we could

November 5th, 2024

wrap the differences in a few macros or classes

share the common parts

The square root of 2 is 1.41421

#include <cmath>

#include <cstdio>

#include <cuda_runtime.h>

__device__

vold print_sqrt(double x) {
printf("The square root of %g is %g\n", x, std::sqrt(x));
}

__global__

voild kernel() {
print_sqrt(2.);
}

int main() {
kernel<<<1, 1>>>();
cudaDeviceSynchronize();

}

A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* notreally
» trivially extending our example to an expensive computation would give horrible performance!

« why?
* a3 CPUwillrun asingle-threaded program very efficiently
* a3 GPU would perform horribly

- use asingle thread out of O(1k): use less than 1%. of its computing power
- use asingle block: loose any possibility of hiding memory latency
- cannot take advantage of advanced capabilities like atomic operations, shared memory, etc.

 and what about different GPU back-ends ?

* what we need is performance portability
* write code in a way that can run on multiple platforms
* leverage their potential
* and achieve (almost) native performance on all of them

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

performance portability 2= [, . -

OpenMP

OpenACC alﬁa Ka

GyeL =

v OKKOS

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

the alpalka performance portability library

* it aims to provide performance portability
across accelerators through the abstraction
of the underlying levels of parallelism

Thread

(Element]

it currently supports
* CPUs, with serial and parallel execution
* NVIDIA GPUs, with CUDA
 AMD GPUs, with HIP/ROCm
* Intel GPUs and FPGAs, with on SYCL and Intel oneAPI

| Global Memory |

| Shared Memory |

|Register Memory |

it is easy to integrate in an existing project
* write code once, use a Makefile of CMake to build it fFor multiple backends
* asingle application can supports all the different backends at the same time

the latest documentation is available at https://alpaka.readthedocs.io/en/latest/index.html

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://alpaka.readthedocs.io/en/latest/index.html

setting up alfxaka)

* download the latest stable version of alpaka from GitHub
* useversion 1.2.0, released on October 2" 2024, to make sure the examples will work as expected

* thisis a“long term support” release while development moves towards alpaka 2.0.0
- last version to support c++17

define a directory for the alpaka library
export ALPAKA BASE=~/private/alpaka

clone the latest version of alpaka into a predefined directory
git clone https://github.com/alpaka-group/alpaka SALPAKA_BASE -b 1.2.0

» alpaka 2.0.0 will be released in 2025
- will require c++20
- will have some breaking changes in the memory and kernel APIs
- plan to support more modern features like unified memory, cooperative groups, graphs, etc.

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

setting up alfxaka)

* download the latest stable version of alpaka from GitHub

* useversion 1.2.0, released on October 2" 2024, to make sure the examples will work as expected

* thisis a“long term support” release while development moves towards alpaka 2.0.0

- last version to support c++17

define a directory for the alpaka library
export ALPAKA BASE=~/private/alpaka

clone the latest version of alpaka into a predefined directory
git clone https://github.com/alpaka-group/alpaka SALPAKA_BASE -b 1.2.0

this part sets up the
environment

make sure todo itin
every session

» alpaka 2.0.0 will be released in 2025
- will require c++20
- will have some breaking changes in the memory and kernel APIs
- plan to support more modern features like unified memory, cooperative groups, graphs, etc.

T

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

« Alpaka internally uses preprocessor symbols to enable the different backends:
* ALPAKA_ACC_GPU_CUDA_ENABLED for running on NVIDIA GPUs
* ALPAKA_ACC_GPU_HIP_ENABLED for running on AMD GPUs
 ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED for running serially on a CPU

* in this tutorial we will build separate applications from each example
» each application is compiled with the corresponding compiler (g++, nvcc, hipcg, ...)
* each application uses a single back-end

* jtisalso possible to enable more than one back-end at a time

* however, the underlying CUDA and HIP header files will clash, so one needs to play some tricks with
forward declarations, or use separate compilation for the different backends

* and separate the host and device parts

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

Host-side API

* initialisation and device selection: Platforms and Devices

* asynchronous operations and synchronisation: Queues and Events
* owning memory Buffers and non-owning memory Views

* submitting work to devices: work division and Accelerators

Device-side API

* plain C++ for device functions and kernels

* shared memory, atomic operations, and memory fences
* primitives for mathematical operations

* warp-level primitives for synchronisation and data exchange (not covered)
* random number generator (not covered)

nota bene;

* most Alpaka API objects behave like shared_ptrs, and should be passed by value or by reference to const (i.e. const&)

November 5th, 2024

A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

platforms and devices

|xalka: initialisation and device e

Platform and Device
* identify the type of hardware (e.g. host CPUs or NVIDIA GPUs) and individual devices (e.g. each single
GPU) present on the machine

* the CPU device DevCpu serves two purposes:
- as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, launch kernels, etc.)

- asan “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)
» platforms and devices should be created at the start of the program and used consistently

- may hold an internal state, avoid creating multiple instances for the same hardware

* Ssome common cases

CPUs, serial or parallel PlatformCpu DevCpu
NVIDIA GPU, with CUDA PlatformCudaRt DevCudaRt
AMD GPUs, with HIP/ROCm PlatformHipRt DevHipRt

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* Alpaka provides a simple API to enumerate the devices on a given platform:

* alpaka::getDevCount(platform)

- returns the number of devices on the given platform

* alpaka::getDevByIdx(platform, index)

- initialises the index-th device on the platform, and returns the corresponding Device object

* alpaka::getDevs(platform)
- initialises all devices on the platform, and returns a vector of Device objects

* alpaka::getName(device)

- returns the name of the given device

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

D) your first alpaka applicatic

int main() { https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

std::cout << "Host platform: << alpaka::core::demangled<HostPlatform> << '\n';

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

// get all the devices on the accelerator platform
Platform platform;
std: :vector<Device> devices = alpaka::getDevs(platform);

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)

std::cout << - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

w
{

int main() { https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

// the host abstraction always has a single device
[HostPlatform host platformi
Host host = alpaka getDevByIdx[host platform] Ou);

\

<< alpaRa::core::demangled<HostP1atform> << '"\n';

std::cout << st platform:
std::cout << "Found 1 device:\n"; \

std::cout << - alpaka::getName(h;§tz\if "\n';
std::cout << std::endl;

~

— ~—_

E— —1 these are the host and accelerator platforms
// get all the devices on the acceleratgp/platform /

[Platform platform](*****’””” /,/ \

\
std: :vector<Device> devices = alpaka::getDevs(platform)< /// \
std::cout << "Accelerator platform: " << alpaka::core::demangled{Platformp << '\n';

std::cout << "Found " << devices.size() << " device(s):\n";

for (auto const& device : devices)

std::cout << - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

D) your first alpaka applicatic

int main() { https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

std::cout << "Host platform: <<[a1paka::core::demangled<HostP1atform>]<< "\n';

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n'i

std::cout << std::endl;

\//0 alpaka: :core: :demangled<T> is a string with
// get all the devices on the accelerator platform / the "human readable” name of c++ type name
Platform platform; f
std: :vector<Device> devices = alpaka::getDevs(platform); f

<<[alpaka::core::demangled<Platform>]<< "\n';

std::cout << "Accelerator platform:

std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)

std::cout << - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

D) your first alpaka applicatic

| i =
int main() { https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc
// the host abstraction always has a single device
HostPlatform host_platform;
Host host =[a1paka: :getDevByIdx(host_platform, 0u)]<70 get the nt" device for the given p[atform

std::cout << "Host platform: << alpaka::core::demangled<HostPlatform> << '\n';

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

// get all the devices on the accelerator platform
Platform platform;
std: :vector<Device> devices = alpaka::getDevs(platform);

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)

std::cout << - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

D) your first alpaka applicatic

o T

int main() { https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

std::cout << "Host platform: << alpaka::core::demangled<HostPlatform> << '\n';

std::cout << "Found 1 device:\n";

std::cout << - " << alpaka::getName(host) << '\n';
std::cout << std::endl;

// get all the devices on the accelerator platform
Platform platform;

std: :vector<Device> devices =[alpaka: :getDevs(platform);](e get all devices on the platform

std::cout << "Accelerator platform: << alpaka::core::demangled<Platform> << '\n';
std::cout << "Found " << devices.size() << " device(s):\n";
for (auto const& device : devices)

std::cout << - " << alpaka::getName(device) << '\n';
std::cout << std::endl;

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

w
{

int main() { https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

o T

// the host abstraction always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

std::cout << "Host platform: << alpaka::core::demangled<HostPlatform> << '\n';
std::cout << "Found 1 device:\n";
std::cout << " - " <<[alpaka::getName(host)]<(»i\nL;\

std::cout << std::endl;

// get all the devices on the accelerator platform \\\\\

Platform platform; — 4 tth fthe devi
std: :vector<Device> devices = alpaka::getDevs(platform); // 2 = MEliE @ =aEves
std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << "\n';

std::cout << "Found " << devices.size() << " device(s):\n"; /

for (auto const& device : devices) /////

std::cout << " - " <<[a1paka::getName(device)]4%**""\?1/'/;
std::cout << std::endl;

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

/*
g++ -std=c++17 -02 -g \

-ISALPAKA_BASE/include -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED \
00_enumerate.cc -o 00_enumerate_cpu

nvcc -x cu -std=c++17 -02 -g --expt-relaxed-constexpr \

-ISALPAKA_BASE/include -DALPAKA ACC_GPU_CUDA_ENABLED \
00_enumerate.cc -o 00_enumerate_cuda

*/

#include <iostream>
#include <vector>

#include <alpaka/alpaka.hpp>

#include "config.h"

» grab all the examples from GitHub

git clone https://github.com/fwyzard/intro_to_alpaka.git

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

let’s build it ...

e using the CPU as the “accelerator”
* the CPU acts as both the “host” and the “device”
* the application runs entirely on the CPU

g++ -std=c++17 -02 -g \
-I /include -D
00_enumerate.cc \
-0 00_enumerate_cpu

* using the CUDA GPUs as the "accelerator”
 the CPU acts as the “host”, the GPUs act as the “devices”
* the application launches kernels that run on the GPUs

nvcc -x cu -expt-relaxed-constexpr -std=c++17 -02 -g \
-1 /include -D
00_enumerate.cc \
-0 00_enumerate_cuda

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

...and runit

$./00 _enumerate cpu Host platform: alpaka::PlatformCpu

Host platform: alpaka::PlatformCpu Found 1 device:

Found 1 device: - AMD EPYC 7352 24-Core Processor
- AMD EPYC 7352 24-Core Processor

Accelerator platform:
alpaka::PlatformUniformCudaHipRt<alpaka: :ApiCuda
Rt>

Found 2 device(s):
- Tesla T4
- Tesla T4

Accelerator platform: alpaka::PlatformCpu
Found 1 device(s):
- AMD EPYC 7352 24-Core Processor

November 5%, 2024 A.Bocci - Anintroduction to Alpaka 28 /54

https://creativecommons.org/licenses/by-sa/4.0/

?

#1f defined(ALPAKA_ACC_GPU_CUDA_ENABLED) k
// CUDA backend
using Device = alpaka::DevCudaRt;

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

using Platform = alpaka::Platform<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)
// HIP/ROCm backend
using Device = alpaka::DevHipRt;

using Platform = alpaka::Platform<Device>; .
g P back end alpaka platform | alpaka device

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED) CPUs, serial or parallel PlatformCpu DevCpu
// CPU serial backend NVIDIA GPU, with CUDA PlatformCudaRt DevCudaRt

using Device = alpaka::DevCpu; . latf . .
using Platform = alpaka::Platform<Device>; AMD GPUs, with HIP/ROCm PlatformHipRt DevHLpRt

#else
// no backend specified
#terror Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

// CUDA backend
using Device = alpaka::DevCudaRt; \
using Platform = alpaka::Platform<Device>; \

#elif defined|ALPAKA_ACC_GPU_HIP_ENABLED) |
// HIP/ROCm backend ir\»%\%,

sing bevice = alpaka::DevHipRE; = depending on which back-end is enabled ...

/

using Platform = alpaka::Platform<Device>; /

/’/
#elif defined{ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)]4//
// CPU serial backend
using Device = alpaka::DevCpu;

using Platform = alpaka::Platform<Device>;

#else
// no backend specified
#terror Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

?

#1f defined(ALPAKA_ACC_GPU_CUDA_ENABLED)| https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h
// CUDA backend

using|Device = alpaka::DevCudaRt; :
using|Platform = alpaka::Platform<Device> \\\\\

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED) \
// HIP/ROCm backend

using|Device = alpaka::DevHipRt;

using|Platform = alpaka::Platform<Device> -
y

#elif defined(ALPAKA_ACC_CPU_B_SEQ T_SEQ ENABLED)

// CPU serial backend /

using|Device = alpaka::DevCpu; //////

using[}latform = alpaka::Platform<Device> :

\
\
/

\ depending on which back-end is enabled,

——e Device and Platform are aliased to different types

#else
// no backend specified
#terror Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

queues and events

identify a “work queue” where tasks (memory operations, kernel executions, ...) are executed in order
- for example, a queue could represent an underlying CUDA stream or a CPU thread

- from the point of view of the host, queues can be synchronous or asynchronous

with a synchronous (or blocking) queue:
- any operation is executed immediately, before returning to the caller
- the host automatically waits (blocks) until each operation is complete

with an asynchronous (or non-blocking) queue:
- any operation is executed in the background, and each call returns immediately, without waiting for its completion
- the host needs to synchronize explicitly with the queue, before accessing the results of the operations

in general, prefer using a synchronous queue on a CPU, and an asynchronous queue on a GPU
gueues are always associated to a specific device

most Alpaka operations (memory ops, kernel launches, etc.) are associated to a queue
Alpaka does not provide a “default queue”, create one explicitly

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

creating a queue of the predefined type associated to a device is as simple as

auto queue = Queue(device);

waiting for all the asynchronous operations in a queue to complete is as simple as

alpaka::wait(queue);

enqueue a host function
alpaka: :enqueue(queue, host_function);
alpaka: :enqueue(queue, [&]() { .. });

enqueue a device function (launch a kernel)
alpaka: :exec<Acc>(queue, grid, kernel, args..);

allocate, set, or copy memory host and device memory
auto buffer = alpaka::allocAsyncBuf<T, size_ t>(queue, size);
alpaka: :memset(queue, buffer, 0x00);
alpaka: :memcpy(queue, destination, source);

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

Events:
* events identify points in time along a work queue
can be used to query or wait for the readiness of a task submitted to a queue
can be used to synchronise different queues

like queues, events are always associated to a specific device

November 5th 2024 A Boccu - An |ntroduct|on to Alpaka 35/54

https://creativecommons.org/licenses/by-sa/4.0/

e events associated to a given device can be created with:
auto event = Event(device);

* events are enqueued to mark a given point along the queue:
alpaka: :enqueue(queue, event);
- aneventis “complete” once all the work submitted to the queue before the event has been completed

* anevent can be used to block the execution on the host until it is complete:
alpaka::wait(event);
- blocks the execution on the host

» or to make an other queue wait until a given event (in a different queue) is complete:
alpaka::wait(other_queue, event);
- does not block execution on the host
- Further work submitted to other_queue will only start after event is complete

* anevent’'s status can also be queried without blocking the execution:

alpaka::isComplete(event);

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

more magic

: &; ; -7 6?; ﬂﬁ

o P " Lov i L

#1f defined(ALPAKA_ACC_GPU_CUDA_ENABL| https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

// CUDA backend
using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined (ALPAKA ACC_GPU_HIP_ ENABLED)

// HIP/ROCm backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;
using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_CPU_B SEQ T _SEQ ENABLED)

// CPU serial backend

using Queue = alpaka::Queue<Device, alpaka::Blocking>;
using Event = alpaka::Event<Queue>;

#else
// no backend specified

#terror Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED,
ALPAKA_ACC_CPU_B_SEQ T _SEQ_ENABLED

#endif

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

#1f defined(ALPAKA_ACC_GPU_CUDA_ENABL

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

// CUDA backend

using Queue = alpaka::Queue<Device, [alpaka NonBlocktng}q(\\

using Event = alpaka::Event<Queue>;

// HIP/ROCm backend

#elif defined(ALPAKA ACC_GPU_HIP_ENABLED) —* prefer asynchronous queues for a GPU

using Queue = alpaka::Queue<Device, [alpaka NonBlocktng}‘

using Event = alpaka::Event<Queue>;

// CPU serial backend

#elif defined(ALPAKA_ACC_CPU_B_SEQ T_SEQ ENABLED)

using Queue = alpaka::Queue<Device,[alpaka::Blocking}q(vw%

\77777

using Event = alpaka::Event<Queue>;

#else
// no backend specified

ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

—eo prefer synchronous queues for a CPU

#error Please deflne one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED,

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

int matn() { https://github.com/fwyzard/intro_to alpaka/blob/master/alpaka/01_blocking queue.cc

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
std::cout << "Found 1 device:\n";

std: :cout << - " << alpaka::getName(host) << "\n\n";

// create a blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::Blocking> queue{host};

std::cout << "Enqueue some work\n";

alpaka: :enqueue(queue, []() noexcept {
std::cout << " - host task running...\n";
std::this_thread::sleep_for(std::chrono::seconds(5u));
std::cout << " - host task complete\n";

s

// wait for the work to complete

std::cout << "Wailt for the enqueue work to complete...\n";
alpaka: :wait(queue);

std::cout << "All work has completed\n";

November 5th, 2024 - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

int main() {

/7] the host platform always has a single device ‘\
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

<
std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
std::cout << "Found 1 device:\n";
\éﬁd::cout << " - " << alpaka::getName(host) << "\n\n"; <4/

// create a blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::Blocking> queuef{host};

std::cout << "Enqueue some work\n";

alpaka: :enqueue(queue, []() noexcept {
std::cout << " - host task running...\n";
std::this_thread::sleep_for(std::chrono::seconds(5u));
std::cout << " - host task complete\n";

i9H

// wait for the work to complete

std::cout << "Wailt for the enqueue work to complete...\n";
alpaka: :wait(queue);

std::cout << "All work has completed\n";

e this part we know

November 5th, 2024 - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

fun with queues

P e . 7

int main() {

std::cout << -

https://github.com/fwyzard/intro_to alpaka/blob/master/alpaka/01_blocking queue.cc

std::cout << "Host platform:
std::cout << "Found 1 device:\n";
<< alpaka::getName(host) << "\n\n";

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

<< alpaka::core::demangled<HostPlatform> << '"\n';

std::cout <<

std::cout <<

i9H

alpaka: :wait(queue);

std::cout << "Enqueue some work\n";
alpaka: :enqueue(queue, []() noexcept {

- host task running...\n";
std::this_thread::sleep_for(std::chrono::seconds(5u));
- host task complete\n";

i jbmit some work to it
alpaka: :Queue<Host, alpaka::Blocking>|queue{host};

B e create a blocking queue on the Host

// wait for the work to complete
std::cout << "Wait for the enqueue work to complete...\n";

std::cout << "All work has completed\n";

November 5th, 2024

- Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

fun with queues

P e . 7

int main() {

alpaka: :enqueue(queue,
std::cout << "

std::cout <<

i9H

alpaka: :wait(queue);

std::cout << "Host platform:
std::cout << "Found 1 device:\n";

https://github.com/fwyzard/intro_to alpaka/blob/master/alpaka/01_blocking queue.cc

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

<< alpaka::core::demangled<HostPlatform> << '"\n';

std::cout << - " << alpaka::getName(host) << "\n\n";

// create a blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::Blocking> queuef{host};

std::cout << "Enqueue some work\n";

[10) noexcept {|<C e this syntax introduces a lambda expression ...

- host task running...\n";
std::this_thread::sleep_for(std::chrono::seconds(5u));
- host task complete\n";

// wait for the work to complete
std::cout << "Wait for the enqueue work to complete...\n";

std::cout << "All work has completed\n";

November 5th, 2024

- Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

fun with queues

int main() {

std::cout <<

https://github.com/fwyzard/intro_to alpaka/blob/master/alpaka/01_blocking queue.cc

std::cout << "Host platform:
std::cout << "Found 1 device:\n";
<< alpaka::getName(host) << "\n\n";

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

<< alpaka::core::demangled<HostPlatform> << '"\n';

// create a blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::Blocking> queuef{host};

std::cout << "Enqueue some work\n";

alpaka: :enqueue(queue, []() noexcept { this syntax introduces a lambda expression

std::cout <<

std::cout <<

- host task running...\n";

std::this_thread::sleep_for(std::chrono::seconds(5u)); = that performs these operations
- host task complete\n";

i9H

// wait for the work to complete

std::cout << "Wait for the enqueue work to complete...\n";
alpaka: :wait(queue);

std::cout << "All work has completed\n";

togethwer with alpaka: :enqueue(...), this part
- creates an object that encapsulates some operations
- submits those opertations to run in a queue

November 5th, 2024

- Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

fun with queues

P e . 7

int main() {

std::cout << -

alpaka: :Queue<Host,

std::cout << =

std::cout << =

i9H

std::cout << "Host platform:
std::cout << "Found 1 device:\n";

std::this_thread::

}

https://github.com/fwyzard/intro_to alpaka/blob/master/alpaka/01_blocking queue.cc

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::

getDevByIdx(host_platform, Ou);

<< alpaka::core::demangled<HostPlatform> << '"\n';

<< alpaka::getName(host) << "\n\n";

// create a blocking host queue and submit some work to it

alpaka: :Blocking> queue{host};

std::cout << "Enqueue some work\n";
alpaka: :enqueue(queue, []() noexcept {

host task running...\n";
sleep_for(std::chrono::seconds(5u));
host task complete\n";

// wait for the work to complete

std::cout << "Wait for the enqueue work to complete...\n";
[alpaka ::wait(queue) J(
std::cout << "All work has completed\n";

® wait for the enqueued operations to complete

November 5th, 2024

A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

in this example we are not making use of any accelerator
* let's build it only For the CPU back-end

g++ -D \
-std=c++17 -02 -g -I /include \
01_blocking_queue.cc \

-0 01_blocking_queue_cpu

and run it
$./01_blocking queue_cpu
Host platform: alpaka::PltfCpu
Found 1 device:
- AMD EPYC 7352 24-Core Processor

Enqueue some work

- host task running...

- host task complete
Wait for the enqueue work to complete...
ALl work has completed

November 5%, 2024 A.Bocci - Anintroduction to Alpaka 45 /54

https://creativecommons.org/licenses/by-sa/4.0/

anasyncexample -=O=1 = .

int main() {

Host host = alpaka::

std::cout << "Found

std::cout << -

alpaka: :Queue<Host,

std::cout <<
std::this_thread::

"

std::cout << -

i9H

alpaka: :wait(queue);

std::cout << "Host platform:

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking queue.cc

// the host platform always has a single device
HostPlatform host_platform;

getDevByIdx(host_platform, Ou);

<< alpaka::core::demangled<HostPlatform> << '\n';
1 device:\n";
<< alpaka::getName(host) << "\n\n";

// create a non-blocking host queue and submit some work to it

alpaka: :NonBlocking> queuef{host};

std::cout << "Enqueue some work\n";
alpaka: :enqueue(queue, []() noexcept {
- host task running...\n";

sleep_for(std::chrono::seconds(5u));
host task complete\n";

// wait for the work to complete
std::cout << "Wailt for the enqueue work to complete...\n";

std::cout << "All work has completed\n";

November 5th, 2024

- Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

int matn() { https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking queue.cc

// the host platform always has a single device
HostPlatform host_platform;
Host host = alpaka::getDevByIdx(host_platform, Ou);

std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';
std::cout << "Found 1 device:\n";

std::cout << " - " << alpaka::getName(host) << "\n\n";
create a non-blocking host queue and submit some work to it
alpaka: :Queue<Host, alpaka::NonBlocking> queue{host};
std::cout << "Enqueue some \;;FE\irT"i;qfiiiiiii ® Createa non-blocking queue on the Host

alpaka: :enqueue(queue, []() noexcept {
std::cout << " - host task running...\n";
std::this_thread::sleep_for(std::chrono::seconds(5u));
std::cout << " - host task complete\n";

i9H

// wait for the work to complete

std::cout << "Wailt for the enqueue work to complete...\n";
alpaka: :wait(queue);

std::cout << "All work has completed\n";

November 5th, 2024 - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

in this example, too, we are not making use of any accelerator
* let's build it only for the CPU back-end — with POSIX threads

g++ -D \

-std=c++17 -02 -g -I /include| -pthread |\
02_nonblocking_queue.cc \

-0 02_nonblocking_queue_cpu

and run it
$./02_nonblocking_queue_cpu
Host platform: alpaka::PltfCpu
Found 1 device:
- AMD EPYC 7352 24-Core Processor

Enqueue some work

Wait for the enqueue work to complete...
- host task running...
- host task complete

ALl work has completed

November 5%, 2024 A.Bocci - Anintroduction to Alpaka 48 [54

https://creativecommons.org/licenses/by-sa/4.0/

N4

$./01 blocking_queue_cpu
Host platform: alpaka::PltfCpu
Found 1 device:

- AMD EPYC 7352 24-Core Processor

Enqueue some work

- host task running...

- host task complete
Wait for the enqueue work to complete...
ALl work has completed

November 5th, 2024

A. Bocci - Anintroduction to Alpaka

o) blocking vs non-blockingo = /| =

Nghae il

$./02_nonblocking_queue cpu
Host platform: alpaka::PltfCpu
Found 1 device:

- AMD EPYC 7352 24-Core Processor

Enqueue some work

Wait for the enqueue work to complete...

- host task running...
- host task complete
ALl work has completed

49 / 54

https://creativecommons.org/licenses/by-sa/4.0/

CE/RW
{

N4

$./01 blocking_queue_cpu $./02_nonblocking_queue
Host platform: alpaka::PltfCpu Host platform: alpaka::PltfCpu
Found 1 device: Found 1 device:

- AMD EPYC 7352 24-Core Processor - AMD EPYC 7352 24-Core Processor

Enqueue some work Enqueue some work
- host task running... Wait for the enqueue work to complete...
- host task complete - host task running...

Wait for the enqueue work to complete... - host task complete

ALl work has completed ALl work has completed

* with a synchronous (or blocking) queue:
~— any operation is executed immediately, before returning to the caller
~— the host automatically waits (blocks) until each operation is complete
* with an asynchronous (or non-blocking) queue:
~— any operation is executed in the background, and each call returns immediately, without waiting for its completion

the host needs to synchronize explicitly with the queue, before accessing the results of the operations

November 5%, 2024 A.Bocci - Anintroduction to Alpaka 50 /54

https://creativecommons.org/licenses/by-sa/4.0/

what’'s next ?

summary

today we have learned

* what performance portability means and discovered the
Alpaka library

* how to set up Alpaka for a simple project
* how to compile a single source File for different back-ends
* what are Alpaka platforms, devices, queues and events

* in the next part we will see
* how to work with host and device memory
* how to write device functions and kernels

* how to use an Alpaka accelerator and work division to
launch a kernel

a complete example !

November 5th, 2024 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

CERN

Copyright CERN 2024
Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

