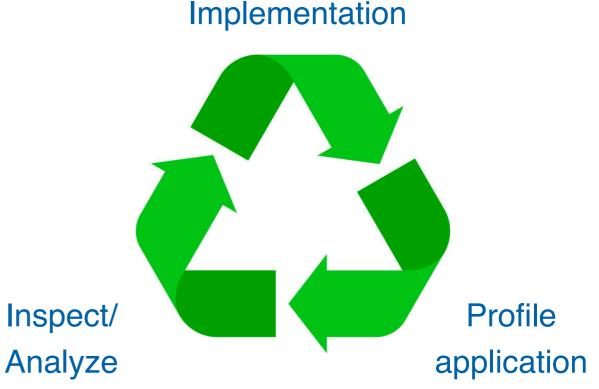
Fermilab Dus. Department of Science

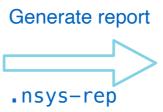

Introduction to NVIDIA profiling tools

Martin Kwok(Fermilab)

Traineeships in Advanced Computing for High Energy Physics (TAC-HEP) 31 Oct, 2024

Overview of profilers

- GPU programing is often an iterative process
 - Profiling often provides important insight to achieving better performance
- Nvidia has two main profiling tools* for different level of analysis
- Nsight System
 - A *system-wide* performance analysis tool
 - Overview of program timeline (Host/GPU trace)
 - Data movement/ synchronization
- Nsight Compute
 - An interactive kernel profiler for CUDA applications
 - GPU utilization
 - Memory access
 - Source-code reference


🛠 Fermilab

*older tools called nvprof/NVVP are being deprecated

Nsight system

- System-wide application algorithm tuning
- Visualization
 - Locate optimization opportunities
 - See gaps of unused CPU and GPU times

Command line interface: nsys

Graphical interface: nsight-sys

Time (%)	Total Time (ns)	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	StdDev (ns)	Name		
96.9	14,319,334,568	154	92,982,692.0	100,139,902.0	2,560	100.143.937	24,886,371.8	poll		
2.3	342,595,408	508	674,400.4				7,603,508.4			
0.6	88,713,038						13,887,463.8			
0.1	21,921,139	27 28	782,897.8	2,435.0	1,150	20,423,878	3,854,048.7	fopen		
0.0	867,626		96,402.9	49,310.0	16,340	502,894	153,391.8	sem_timedwait		
0.0	803,508		29,759.6	3,540.0			93,578.8			
0.0	582,824	5	116,564.8	1,720.0	1,220	313,762	158,570.3	fcntl		
0.0	469,212	4	117,303.0	116,650.5	44,550	191,361	75,627.4	pthread_create		
0.0	357,502 239,796 95,481	5	71,500.4	15.090.0	4,110	316,282	136,960.1	pthread_create fread open64		
0.0	239,796	44	5,449.9	15,090.0 4,335.0	1,350	26,160	4,006.3	open64		
0.0	95,481	17	5,616.5	4,050.0	1,290	23,360	5,337.4	munmap		
0.0	34,021		34,021.0	34,021.0	34,021	34,021	0.0	fgets		
0.0	29,700	6	4,950.0	3,755.0	1,960	9,430	3,350.0	open		
0.0	23,702		2,370.2	1,870.5	1,160	4,731	1,382.2	write		
0.0	14,880	9		1,670.0	1,030	2,700	523.7	read		
0.0	12,250	9 2 5 1 1	6,125.0	1,670.0 6,125.0 1,510.0	2,060	10,190	5,748.8	socket		
0.0	10,701	5	2,140.2	1,510.0	1,160	5,260	1,750.8	fclose		
0.0	8,961	1	8,961.0	8,961.0	8,961	8,961	0.0	connect		
0.0	6,260	1	6,260.0	6,260.0	6,260	6,260	0.0	pipe2		
0.0	1,160	1	1,160.0		1,160		0.0	bind		
JDA API S	cuting 'cudaapisum Statistics: Total Time (ns)			Med (ns)	Min (ns)) Max (ns)	StdDev (ns) Name		
46.1	354,695,212	3	118 231 737 3	155 726 568 Ø	27 430 08	3 171 538 5/	51 79 032 968	.5 cudaMallocHost		
38.8	298,764,028		42,680,575.4					.2 cudaDeviceSynchroniz		
14.4	440, 405, 070	2	a, aza , a, a	44 477 007 0				.3 cudaFreeHost		
	5,006,049	3	1,668,683.0	2,249,408.0			50 1,328,789			
	-,/04/	3	265,722.0	190,171.0				.5 cudaMalloc		
0.7	797,166				200/00		201/0/0			
0.7 0.1	797,166 108.870	21	5,184.3	3,480.0	3.00	30 26.83	20 5.167	.7 cudaMemcpvAsvnc		
0.7	110,835,279 5,006,049 797,166 108,870 68,871 25,740	21 7	5,184.3 9,838.7	3,480.0 5,860.0	3,00	00 26,82 30 32.43	20 5,167 30 9,986	.7 cudaMemcpyAsync.5 cudaLaunchKernel.0 cudaStreamCreate		

Nsight system - Command Line Interface(CLI)

- Basic usage: nsys profile [options for profile][application][app. options]
- Example: nsys profile -o fileName --stats=true ./cuda

osrtsum

H	lesult:
-	stats=true gives

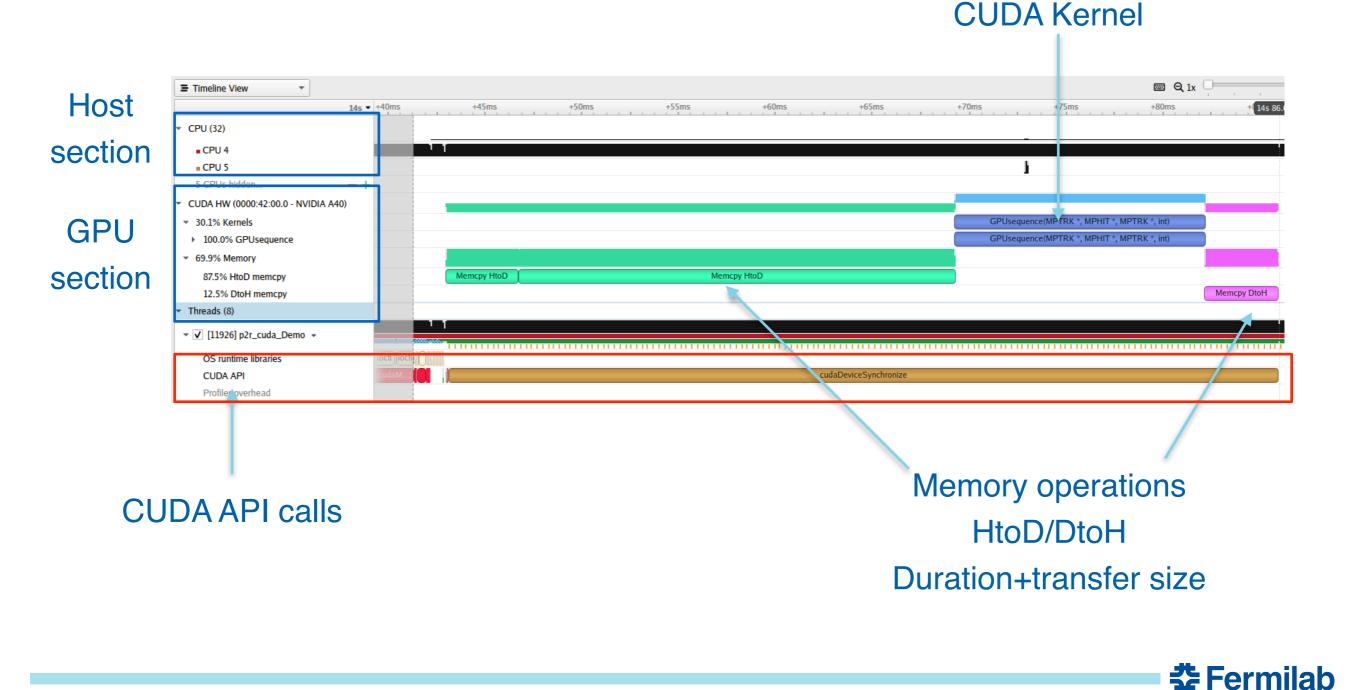
report printouts

 Reports written in filename.nsys-rep & filename.sqlite

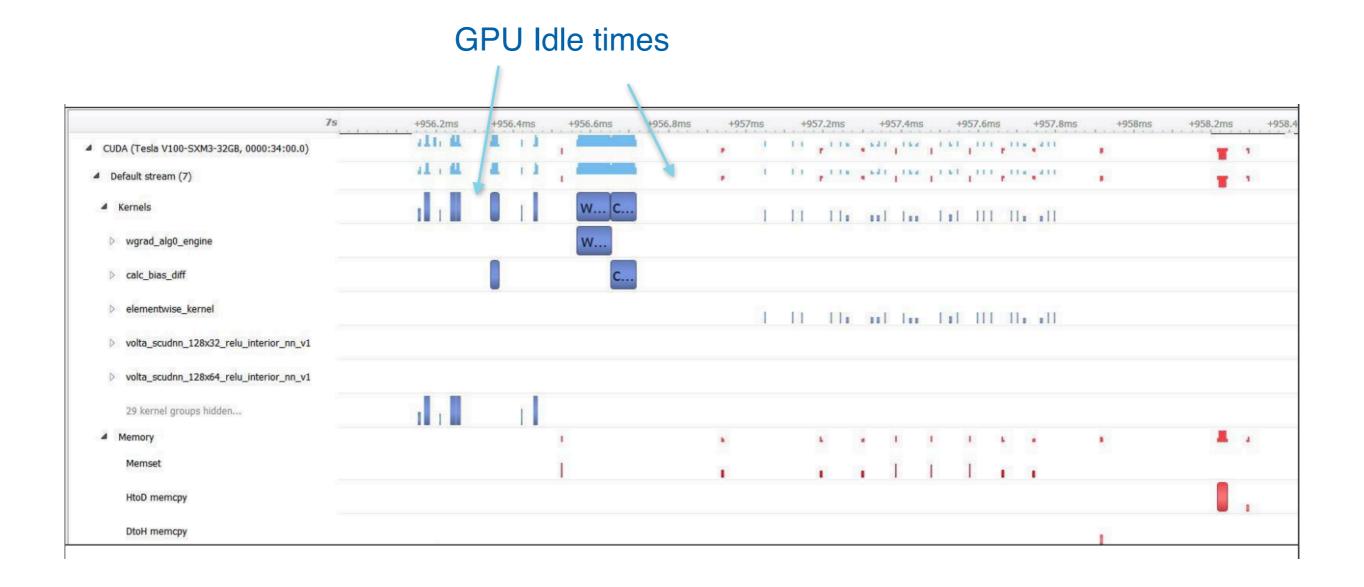
me (%)	Total Time (ns)	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	StdDev (ns)	Name		
96.9	14,319,334,568	154	92,982,692.0	100,139,902.0	2,560	100,143,937	24,886,371.8	poll		
2.3	342,595,408	508	674,400.4	11,695.0	1,010	165,912,878	7,603,508.4	ioctl		
0.6	88,713,038		3,285,668.1	7,170.0	1,360	71,884,588	13,887,463.8	mmap		
0.1	21,921,139	28	782,897.8	2,435.0	1,150	20,423,878	3,854,048.7	fopen		
0.0	867,626	9	96,402.9	49,310.0	16,340	502,894	153,391.8	sem_timedwait		
0.0	803,508	27	29,759.6	3,540.0	2,890	494,224	93,578.8	mmap64		
0.0	582,824	5		1,720.0		313,762	158,570.3	fcntl		
0.0	469,212	4	117,303.0	116,650.5	44,550	191,361	75,627.4	pthread_create		
0.0	357,502	5	71,500.4	15,090.0	4,110	316,282	136,960.1	fread		
0.0	239,796	44	5,449.9	4,335.0	1,350	26,160	4,006.3	open64		
0.0	95,481	17	5,616.5	4,050.0	1,290	23,360	5,337.4	munmap		
0.0	34,021	1	34,021.0	34,021.0	34,021			fgets		
0.0	29,700	6	4,950.0	3,755.0	1,960	9,430	3,350.0	open		
0.0	23,702	10	2,370.2	1,870.5				write		
0.0	14,880	9	1,653.3	1,670.0	1,030		523.7	read		
0.0	12,250	2	6,125.0	6,125.0	2,060	10,190	5,748.8	socket		
0.0	10,701	5	2,140.2	1,510.0	1,160	5,260	1,750.8	fclose		
0.0	8,961	1	8,961.0	8,961.0				connect		
0.0	6,260	1	6,260.0	6,260.0	6,260	6,260	0.0	pipe2		
0.0	1,160	1	1,160.0	1,160.0	1,160	1,160	0.0	bind		
[5/8] Executing 'cudaapisum' stats report Cudaapisum'										

ime (%)	Total Time (ns)	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	StdDev (ns)	Name
46.1	354,695,212	3	118,231,737.3	155,726,568.0	27,430,083	171,538,561	79,032,968.5	cudaMallocHost
38.8	298,764,028	7	42,680,575.4	42,571,950.0	42,566,451	43,103,845	195,558.2	cudaDeviceSynchroniz
14.4	110,635,279	3	36,878,426.3	11,177,207.0	11,058,656	88,399,416	44,618,525.3	cudaFreeHost
0.7	5,006,049	3	1,668,683.0	2,249,408.0	148,381	2,608,260	1,328,789.8	cudaFree
0.1	797,166	3	265,722.0	190,171.0	130,801	476,194	184,675.5	cudaMalloc
0.0	108,870	21	5,184.3	3,480.0	3,000	26,820	5,167.7	cudaMemcpyAsync
0.0	68,871	7	9,838.7	5,860.0	5,430	32,430	9,986.5	cudaLaunchKernel
0.0	25,740	1	25,740.0	25,740.0	25,740	25,740	0.0	cudaStreamCreate

Nsight system - Command Line Interface(CLI)


- Reading back the reports:
 - Print out all reports: nsys stats fileName.nsys-rep
 - Reading one particular report nsys stats --report [option] fileName.nsys-rep --timeunit us
 - To see what reports are available: nsys stats --help-reports

apigpusum[:base|mangled] -- API & GPU Summary (CUDA API + kernels + mem ops) cudaapisum -- CUDA API Summary cudaapitrace -- CUDA API Trace dx12gpumarkersum -- DX12 GPU Command List PIX Ranges Summary gpukernsum[:base|mangled] -- CUDA GPU Kernel Summary gpumemsizesum -- GPU Memory Operations Summary (by Size) gpumemtimesum -- GPU Memory Operations Summary (by Time) gpusum[:base|mangled] -- GPU Summary (kernels + memory operations) gputrace -- CUDA GPU Trace kernexecsum[:base|mangled] -- Summary of kernel launch and exec times kernexectrace[:base|mangled] -- Kernel launch and exec time trace khrdebuggpusum -- OpenGL KHR_debug GPU Range Summary khrdebugsum -- OpenGL KHR_debug Range Summary nvtxgpuproj -- NVTX range projection nvtxkernsum[:base|mangled] -- NVTX Range Kernel Summary nvtxppsum -- NVTX Push/Pop Range Summary nvtxpptrace -- NVTX Push/Pop Range Trace nvtxsesum -- NVTX Start/End Range Summary nvtxsssum -- DEPRECATED - Use nvtxsesum instead nvtxsum -- NVTX Range Summary openaccsum -- OpenACC Summary openmpevtsum -- OpenMP Event Summary osrtsum -- OS Runtime Summary pixsum -- PIX Range Summary umcpupagefaults -- Unified Memory CPU Page Faults Summary unifiedmemory -- Unified Memory Analysis Summary unifiedmemorytotals -- Unified Memory Totals Summary vulkangpumarkersum -- Vulkan GPU Range Summary vulkanmarkerssum -- Vulkan Range Summary wddmqueuesdetails -- WDDM Queues Utilization Summary

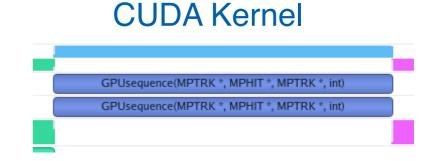

Nsight system - GUI

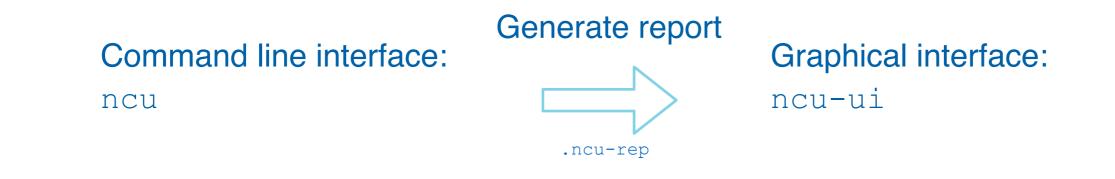
- After generating the reports, start the GUI with nsight-sys
- Visualize the program trace

Nsight system - GUI

- A more realistic example
 - Multiple kernels and/or streams

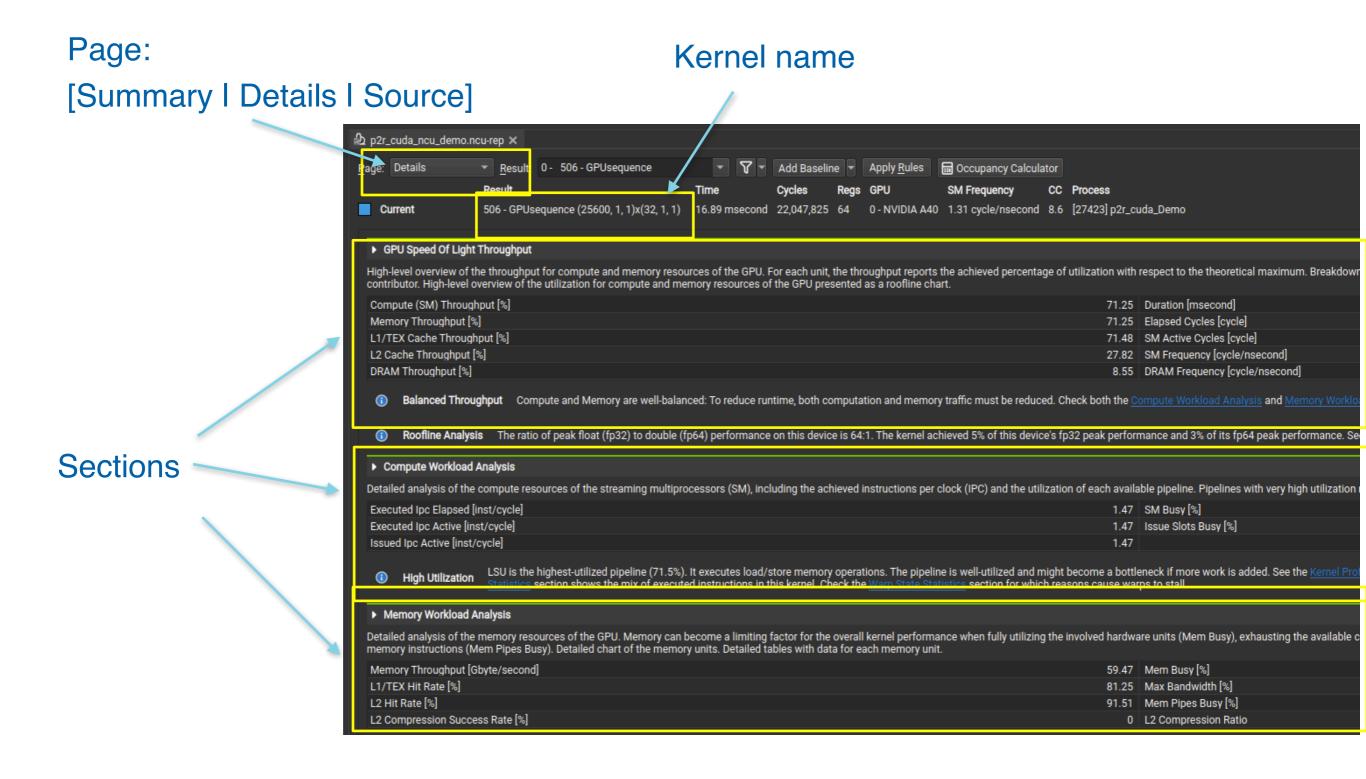
‡ Fermilab





Nsight compute - CLI

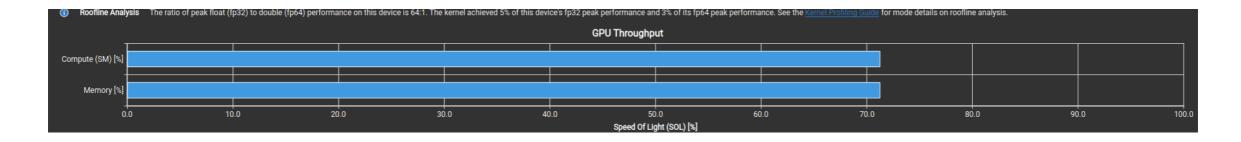
- Nsight-system provides the overview
 - GPU Kernel itself is a "blue box"
- Nsight-compute looks inside the blue box via hardware counters and software instrumentations
 - GPU utilization
 - Memory access
- In general, more "intrusive" to original program
 - Gather much more details
 - Could have non-negligible overheads depending on what data are being collected



Nsight compute - CLI

- Basic Usage: ncu [ncu options] [program] [program-arguments]
- Examples:
- ncu --set=[full] -o p2r_cuda_ncu_demo ./p2r_cuda_Demo
 - Profile a specific kernel
 - ncu --kernel-name GPUsequence ./p2r_cuda_Demo
- What can neu collect? [neu --list-sets]
 - A metric is a characteristic of an application that is calculated from one or more event values
 - A section is a group of metrics

I	dentifier	Sections	Enabled	Estimated Metrics
d	efault	LaunchStats, Occupancy, SpeedOfLight	yes	36
d	etailed	ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly sis, Occupancy, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight_ RooflineChart, WarpStateStats	no	181
1	ull	ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly sis, MemoryWorkloadAnalysis_Chart, MemoryWorkloadAnalysis_Tables, Nvlink_Ta bles, Nvlink_Topology, Occupancy, SchedulerStats, SourceCounters, SpeedOfLi ght, SpeedOfLight_RooflineChart, WarpStateStats	no	198
r	oofline	SpeedOfLight, SpeedOfLight_HierarchicalDoubleRooflineChart, SpeedOfLight_Hi erarchicalHalfRooflineChart, SpeedOfLight_HierarchicalSingleRooflineChart, SpeedOfLight_HierarchicalTensorRooflineChart, SpeedOfLight_RooflineChart	no	48
s	ource	SourceCounters	no	67



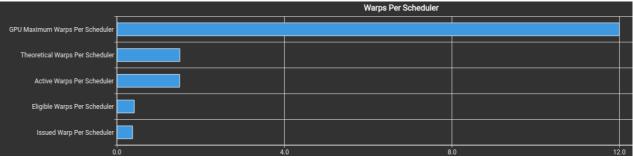
• Speed of Light (SOL) -

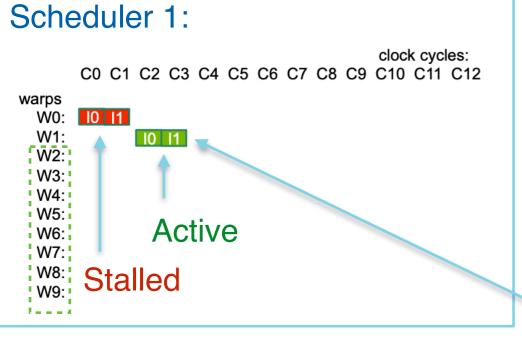
Compare the fraction of achieved compute/memory throughput w.r.t. theoretical maximum

- Higher is better
- If the an application is slow, typically it will show up as low utilization of SM/Memory

- Launch Statistics
 - Grid, blocks, Number of threads
 - Have you launched enough threads?
 - Waves Per SM
 - How many blocks each SM has to compute to finish the grid of work

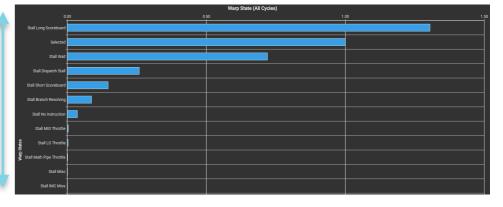
Block Size Threads [thread] 819, Waves Per SM 50	Launch Statistics	
Block Size Threads [thread] 819, Waves Per SM 50	Summary of the configuration used to launch the kernel. Th	ne launch configuration defines the size of the kernel grid, the division of the grid into blocks, and the GPU re
Threads [thread] 819, Waves Per SM 50	Grid Size	25,600
Waves Per SM 50	Block Size	32
	Threads [thread]	819,200
	Waves Per SM	50.79
Function Cache Configuration cudaFuncCachePreterN	Function Cache Configuration	cudaFuncCachePreferNone



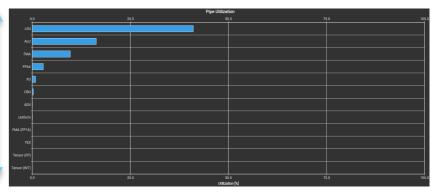

- Deeper dive into SM utilization:
 - How the work is distributed
- Scheduler Statistics Warp State Statistics **Compute Workload**

Warp Activities

Scheduler statistics

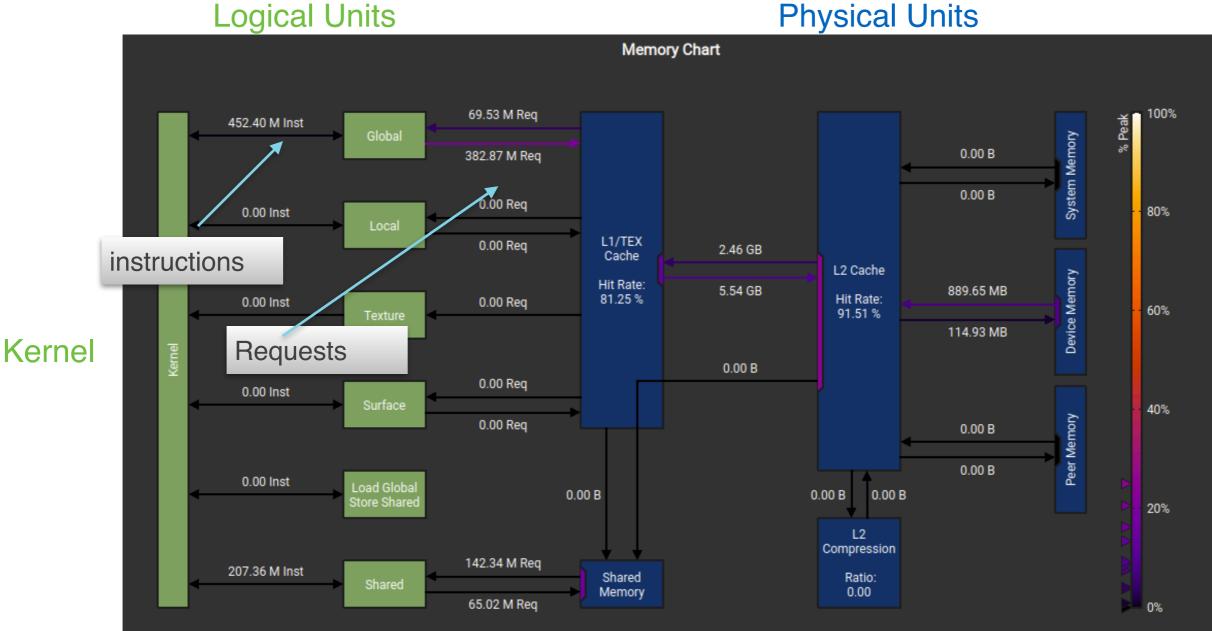


Eligible


Warp states (# cycles spent in each state for each instructions)

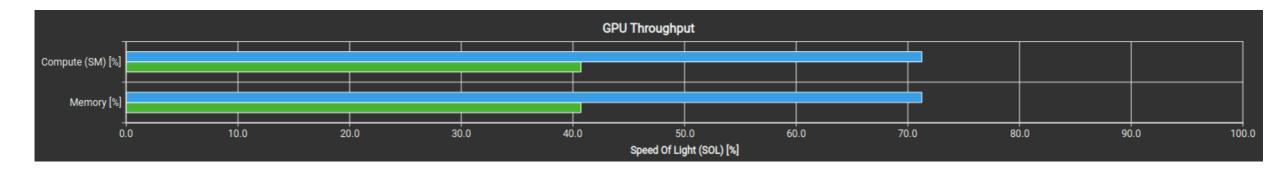
> **Operations** (LSU, ALU, FMA etc)

Warp state statistics



Compute Workload

- Deeper dive into *memory* utilization
- Memory Chart [reference]


Physical Units

‡ Fermilab

Nsight compute - baseline

- Often difficult to understand the all the metrics in an absolute sense
- But the *relative* difference is easier to interpret
- Can use any report as the "Baseline"
 - Open another report to compare all the metrics side-by-side

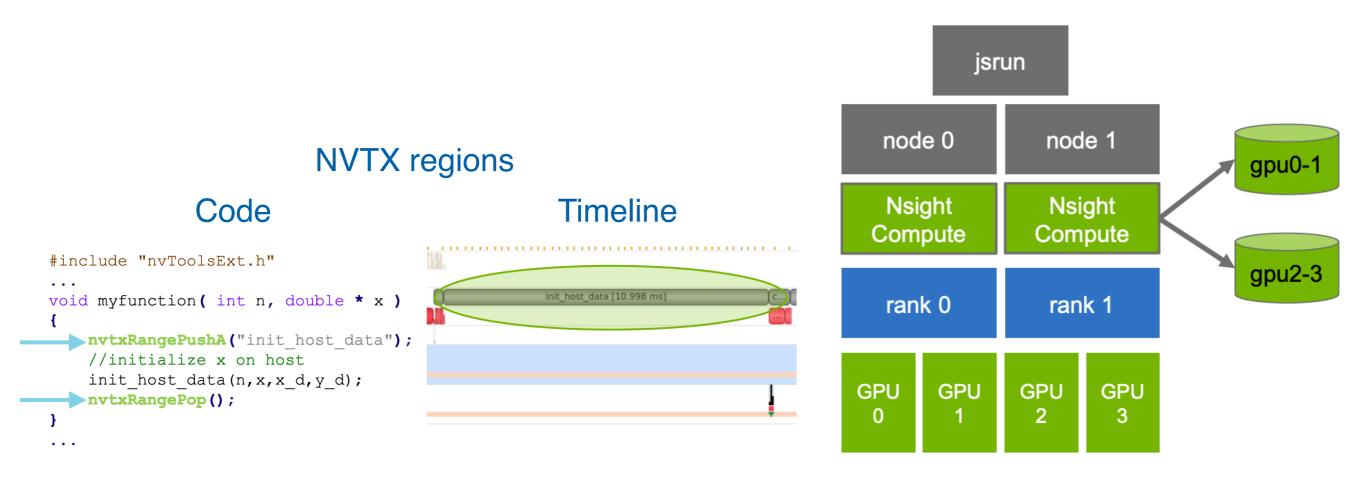
<u>P</u> age: Details	Result: 0 - 506 - GPUsequ	ence 🔹 🏹 🖌 Add Baseline	✓ Apply <u>R</u> ules	🖬 Occup	ancy C	alculator				Copy as Image 🔻
	Report	Result	Time	Cycles	Regs	GPU	SM Frequency	СС	Process	⊕ ⊖ R i
Current	p2r_cuda_ncu_demo	506 - GPUsequence (25600, 1, 1)x(32, 1, 1)	16.89 msecond	22,047,825	64	0 - NVIDIA A40	1.31 cycle/nsecond	8.6	[27423] p2r_cuda_Demo	
Baseline 1	p2r_cuda_ncu_demo_bsize64	506 - GPUsequence (12800, 1, 1)x(32, 1, 1)	29.55 msecond	38,579,650	64	0 - NVIDIA A40	1.31 cycle/nsecond	8.6	[6225] p2r_cuda_Demo_bsize64	

Nsight compute - Source correlation

- Another powerful functionality: source correlation
 - [Compile applications with -lineinfo in nvcc]

Sort by metric values for insight e.g. hot-spot/long stall

Page: Source • fesult: 0 - 506 - GPUsequence • Time Result Time Current 506 - GPUsequence (25600, 1, 1)x(32, 1, 1) 16.89 msecon View: Source and SASS •	 Add Baseline Apply <u>Rules</u> Cycles Regs GPU d 22,047,825 64 0 - NVIDIA A 	SM Frequenc	y CC Proces			Asse	mbly			Copy as Image	
Source: propagate-tor-test_cuda_v4.cu 💽 🗐 Find				Source: GPUs	equence 💌 🖃 Find	Navigation:	Instructions Executed		<u> </u>	18 LB 소	
Navigation: Instructions Executed 🔹 🗸 🗸 다 旧 旧	\$			# Sou	Irce		Live /arp Stal Registers (ll Sampling /arp Sta (All Cycles) Not-issi		Instructions Thread	
# Source	Live arp Stall Sampling Registers (All Cycles)	Instructions h Executed	read Instructions Executed	1180	STG.E [R18.64+0x100], R27		18	553	414	512,000	
# Source 320 return result;	Registers (All Cycles)	Executed	Executed	1181 @PG	CALL.REL.NOINC 0x7f3412fb		15	98		512,000	
				1182			15	99			
	IIIe 。			1183	BSYNC BO		15	831	694	512,000	
323 #define N bsize				1184	ISETP.GT.AND P0, PT, R57,		15 15	1,239	1,055	512,000	
324forceinlinedevice_ void MultHelixProp(const MP(1185	BSSY B0, 0x7f3412fb8370		15	99 1,112	0	512,000	
325 const float* a = (*A).data; //ASSUME_ALIGNED(a, 64);				1186 @P0	BRA 0x7f3412fb8360 BSSY B1, 0x7f3412fb78d0		15	487	936 331	512,000 512,000	
326 const float* b = (*B).data; //ASSUME_ALIGNED(b, 64);	0			1187	MOV R9, R57			407 108	0	512,000	
<pre>327 float* c = (*C).data; //ASSUME_ALIGNED(c, 64); 328 //parallel_for(0,N,[&](int n){</pre>	0			• 1189	MOV R12, R10		17	469	282	512,000	
329 for(int n=threadIdx.x;n <n;n+=blockdim.x)< td=""><td>[[16] 8,040</td><td>4,096,000</td><td>131.072.000</td><td>- 1190</td><td>LDS R42, [R9.X4+0x80]</td><td></td><td>18</td><td>107</td><td></td><td>512,000</td><td></td></n;n+=blockdim.x)<>	[[16] 8,040	4,096,000	131.072.000	- 1190	LDS R42, [R9.X4+0x80]		18	107		512,000	
	0,040	4,030,000	131,072,000	• 1191	MOV R13, R2		1 9	101		512,000	
> 331 c[0*N+n] = a[0*N+n]*b[0*N+n] + a[1*N+n]*b[49 24,114	8,192,000	262,144,000	• 1192	LDS R41, [R9.X4]		20	331	199	512,000	
	51 2,500	4,090,000	131,072,000	• 1193	IMAD.WIDE R12, R9, 0x4, R			201	82	512,000	
333 c[2*N+n] = a[0*N+n]*b[3*N+n] + a[1*N+n]*b[51 2,731	4,608,000	147,456,000	• 1194	LDS R40, [R9.X4+0x180]			243	118	512,000	
334 c[3*N+n] = a[0*N+n]*b[ó*N+n] + a[1*N+n]*b[51 1,895	3,584,000	114,688,000	• 1195	LDG.E R30, [R12.64+0x380]		22	604	470	512,000	
335 c[4*N+n] = a[0*N+n]*b[10*N+n] + a[1*N+n]*b[:	50 1,281	3,072,000	98,304,000	• 1196	LDG.E R31, [R12.64+0x300]		23	427	301	512,000	
336 c[5*N+n] = a[0*N+n]*b[15*N+n] + a[1*N+n]*b[:	51 2,641	4,608,000	147,456,000	1197	LDG.E R15, [R12.64+0x400]		24	416	296	512,000	Ē.
337 c[6*N+n] = a[6*N+n]*b[0*N+n] + a[7*N+n]*b[53 2,325	4,608,000	147,456,000	• 1198	LDG.E R28, [R12.64+0x600] LDG.E R33, [R12.64+0x500]		25	478	342	512,000	
338 c[7*N+n] = a[6*N+n]*b[1*N+n] + a[7*N+n]*b[52 866	2,560,000	81,920,000	<u>1199</u> · 1200	LDG.E R23, [R12.64+0x800]		26	430 401	291 304	512,000 512.000	
339 c[8*N+n] = a[6*N+n]*b[3*N+n] + a[7*N+n]*b[51 1,454	2,560,000	81,920,000	1200	LDG.E R27, [R12.64+0x680]			401	304	512,000	
340 c[9*N+n] = a[6*N+n]*b[6*N+n] + a[7*N+n]*b[51 982	2,560,000	81,920,000	1201	LDG.E R32, [R12.64+0x480]		28	413	299	512,000	A
341 c[10*N+n] = a[6*N+n]*b[10*N+n] + a[7*N+n]*b[1]	51 790	2,560,000	81,920,000	1202	LDG.E R22, [R12.64+0x880]		30	430	340	512,000	
342 c[11*N+n] = a[6*N+n]*b[15*N+n] + a[7*N+n]*b[343 c[12*N+n] = a[12*N+n]*b[0*N+n] + a[13*N+n]*b[52 606 52 3,515	2,560,000 6.144.000	81,920,000	1204	LDG.E R14, [R12.64+0xb00]		31	485	377	512,000	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	52 3,515	6,144,000 3,584,000	196,608,000 114,688,000	1205	LDG.E R16, [R12.64+0xa80]		32	480	353	512,000	
$344 c[13 \times N + n] = a[12 \times N + n] \times b[1 \times N + n] + a[13 \times N + n] \times b[345 c[14 \times N + n] = a[12 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n] + a[13 \times N + n] \times b[3 \times N + n]$	51 1,013	4.608.000	147,456,000	1206	LDG.E R29, [R12.64+0x700]		33	471	361	512,000	E
						Þ				Þ	



More advanced topics

- NSight system
 - NVTX: User defined code regions for more accurate
- NSight-compute
 - User-defined metrics
 - Multi-node profiling

Muplti-node processing

🚰 Fermilab

Summary

- Introduced basic functions of NVIDIA's profiling tools
- NSight-system
 - CPU+GPU program trace for overview
- NSight-compute
 - Deep-dive into individual kernel
 - Baseline analysis
 - Source correlation
- You should be able to collect the profiling results with both tools!
 - Interpretation of results / Identifying problems requires more expertise

Resources

- Nsight system user guide
 - https://docs.nvidia.com/nsight-systems/UserGuide/index.html
- Nsight compute user guide
 - Command line interface <u>https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html</u>

- GUI

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

- Free tutorials for nsight-system/compute
 - Compute Accelerator Forum
 - https://indico.cern.ch/event/962112/
 - https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/
 - https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-compute/
 - General CUDA training:
 - <u>https://www.olcf.ornl.gov/calendar/fundamental-cuda-optimization-part1/</u>

