
Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU programming module

Week 6 : Advanced topics :
NVIDIA HPC STANDARD LANGUAGE

PARALLELISM, C++

Lecture 10 - October 15th 2024

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

What we learnt last week

● We discussed about CUDA streams,
went over the basics of the default and
the non-default streams

● We discussed about the differences
between pinned and paged memory

● We learnt about CUDA events and the
different levels of synchronization
between streams

2

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Today

Today we will hear about a slightly
different topic:
● How can we run parallel code

using C++ standards!

3

HPC programming in ISO C++

4

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

What is High Performance Computing
● High-Performance Computing utilizes

supercomputers and parallel processing to handle
complex computations

5

Exascale class supercomputer already used in HEP.
Image taken from [i]

https://community.hpe.com/t5/servers-systems-the-right/perlmutter-powers-up-meet-the-new-next-gen-supercomputer-at/ba-p/7136279

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

What is High Performance Computing
● High-Performance Computing utilizes

supercomputers and parallel processing to handle
complex computations
○ Crucial for complex simulations or when

handling a large amount of data
○ Enables solving complex problems that are

infeasible for conventional computers.
○ Critical in fields like scientific research,

simulations, and big data analysis.

6

Exascale class supercomputer already used in HEP.
Image taken from [i]

https://community.hpe.com/t5/servers-systems-the-right/perlmutter-powers-up-meet-the-new-next-gen-supercomputer-at/ba-p/7136279

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

What is High Performance Computing
● High-Performance Computing utilizes

supercomputers and parallel processing to handle
complex computations
○ Crucial for complex simulations or when

handling a large amount of data
○ Enables solving complex problems that are

infeasible for conventional computers.
○ Critical in fields like scientific research,

simulations, and big data analysis.

● Modern HPC systems often combine multiple CPUs
and GPUs to maximize performance.

7

Exascale class supercomputer already used in HEP.
Image taken from [i]

https://community.hpe.com/t5/servers-systems-the-right/perlmutter-powers-up-meet-the-new-next-gen-supercomputer-at/ba-p/7136279

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

What is ISO C++
● The C++ language was standardized by ISO in 1998 :

○ Subsequent updates and revisions have happened over the years
○ Ensure that C++ code is portable and consistent across different compilers and

platforms.
● Latest C++ standard is C++23

8Image taken from [ii]

https://www.modernescpp.com/?trk=article-ssr-frontend-pulse_little-text-block

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

What is ISO C++
● The C++ language was standardized by ISO in 1998 :

○ Subsequent updates and revisions have happened over the years
○ Ensure that C++ code is portable and consistent across different compilers and

platforms.
● Latest C++ standard is C++23

9Image taken from [ii]

Each new ISO
introduces new
features and
improvements!

https://www.modernescpp.com/?trk=article-ssr-frontend-pulse_little-text-block

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Using ICO C++ for parallel programming
std::sort(std::execution::par, c.begin(), c.end());

std::for_each(std::execution::par, c.begin(), c.end(), func);

10

● Introduced in C++ 17
● Parallel and vector concurrency via execution policies

○ std::execution::par
○ std::execution::par_unseq
○ std::execution::seq

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Using ICO C++ for parallel programming
std::sort(std::execution::par, c.begin(), c.end());

std::for_each(std::execution::par, c.begin(), c.end(), func);

11

● Introduced in C++ 17
● Parallel and vector concurrency via execution policies

○ std::execution::seq
○ std::execution::par
○ std::execution::par_unseq

● This execution policy specifies that the
algorithm should be executed sequentially.

● It behaves like a traditional loop, ensuring
that operations are performed in the order
they appear.

● Suitable for small datasets

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Using ICO C++ for parallel programming
std::sort(std::execution::par, c.begin(), c.end());

std::for_each(std::execution::par, c.begin(), c.end(), func);

12

● Introduced in C++ 17
● Parallel and vector concurrency via execution policies

○ std::execution::seq
○ std::execution::par
○ std::execution::par_unseq

● This execution policy allows for parallel execution of
the algorithm.

● It may use multiple threads to perform operations
concurrently.

● Suitable for larger datasets where operations can
be performed independently.

● The order of execution is not guaranteed, meaning
results can be produced out of order.

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Using ICO C++ for parallel programming
std::sort(std::execution::par, c.begin(), c.end());

std::for_each(std::execution::par, c.begin(), c.end(), func);

13

● Introduced in C++ 17
● Parallel and vector concurrency via execution policies

○ std::execution::seq
○ std::execution::par
○ std::execution::par_unseq

● This execution policy allows for both parallel
execution and vectorization.

● It can take advantage of SIMD operations, which
can further enhance performance on supported
hardware.

● Best for data that can be processed in parallel
without dependency between operations.

● The order of execution is not guaranteed.

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Using ICO C++ for parallel programming
std::sort(std::execution::par, c.begin(), c.end());

std::for_each(std::execution::par, c.begin(), c.end(), func);

14

● Introduced in C++ 17
● Parallel and vector concurrency via execution policies

○ std::execution::seq
○ std::execution::par
○ std::execution::par_unseq

● This execution policy allows for both parallel
execution and vectorization.

● It can take advantage of SIMD operations, which
can further enhance performance on supported
hardware.

● Best for data that can be processed in parallel
without dependency between operations.

● The order of execution is not guaranteed.
Offers the highest
performance potential
among the three policies!

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Using ICO C++ for parallel programming
std::sort(std::execution::par, c.begin(), c.end());

std::for_each(std::execution::par, c.begin(), c.end(), func);

15

● Introduced in C++ 17
● Parallel and vector concurrency via execution policies
● NVC++ (since 20.7): automatic CPU or GPU acceleration of C++17

parallel algorithms
○ Levarages CUDA unified memory

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Using ICO C++ for parallel programming
std::sort(std::execution::par, c.begin(), c.end());

std::for_each(std::execution::par, c.begin(), c.end(), func);

16

● Introduced in C++ 17
● Parallel and vector concurrency via execution policies
● NVC++ (since 20.7): automatic CPU or GPU acceleration of C++17

parallel algorithms
○ Levarages CUDA unified memory

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

std::for_each

17

● New overload ExecutionPolicy added to enable parallel execution

https://en.cppreference.com/w/cpp/algorithm/for_each

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

std::for_each

18

● New overload ExecutionPolicy added to enable parallel execution

https://en.cppreference.com/w/cpp/algorithm/for_each

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

A simple example

19

● Include the necessary libraries

#include <stdio.h>
#include <vector>
#include <execution>
#include <algorithm>
#include <ranges>

int main(){

 printf("Hello world from main ");
 auto v = std::views::iota(0,9);
 std::for_each(std::execution::par,
v.begin(), v.end(),
 [=](int i) {
 printf("%d,",i);
 });

 printf("\n");
}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

A simple example

20

#include <stdio.h>
#include <vector>
#include <execution>
#include <algorithm>
#include <ranges>

int main(){

 printf("Hello world from main ");
 auto v = std::views::iota(0,9);
 std::for_each(std::execution::par,
v.begin(), v.end(),
 [=](int i) {
 printf("%d,",i);
 });

 printf("\n");
}

● Include the necessary libraries
● Use the for_each loop

specifying the execution policy

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

A simple example

21

#include <stdio.h>
#include <vector>
#include <execution>
#include <algorithm>
#include <ranges>

int main(){

 printf("Hello world from main ");
 auto v = std::views::iota(0,9);
 std::for_each(std::execution::par,
v.begin(), v.end(),
 [=](int i) {
 printf("%d,",i);
 });

 printf("\n");
}

● Include the necessary libraries
● Use the for_each loop

specifying the execution policy
● Function here is a simple

lambda but one can use any
other function

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

A simple example

22

#include <stdio.h>
#include <vector>
#include <execution>
#include <algorithm>
#include <ranges>

int main(){

 printf("Hello world from main ");
 auto v = std::views::iota(0,9);
 std::for_each(std::execution::par,
v.begin(), v.end(),
 [=](int i) {
 printf("%d,",i);
 });

 printf("\n");
}

● Include the necessary libraries
● Use the for_each loop

specifying the execution policy
● Function here is a simple

lambda but one can use any
other function

● To compile :

nvc++ -stdpar=gpu -Minfo=stdpar --std=c++20 test.cpp

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

A simple example

23

#include <stdio.h>
#include <vector>
#include <execution>
#include <algorithm>
#include <ranges>

int main(){

 printf("Hello world from main ");
 auto v = std::views::iota(0,9);
 std::for_each(std::execution::par,
v.begin(), v.end(),
 [=](int i) {
 printf("%d,",i);
 });

 printf("\n");
}

● Include the necessary libraries
● Use the for_each loop

specifying the execution policy
● Function here is a simple

lambda but one can use any
other function

● To compile :

nvc++ -stdpar=gpu -Minfo=stdpar --std=c++20 test.cpp

nvc++ is a C++ compiler designed to leverage NVIDIA
GPUs for high-performance computing applications
More info here

https://docs.nvidia.com/hpc-sdk//compilers/hpc-compilers-user-guide/index.html

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

A simple example

24

#include <stdio.h>
#include <vector>
#include <execution>
#include <algorithm>
#include <ranges>

int main(){

 printf("Hello world from main ");
 auto v = std::views::iota(0,9);
 std::for_each(std::execution::par,
v.begin(), v.end(),
 [=](int i) {
 printf("%d,",i);
 });

 printf("\n");
}

● Include the necessary libraries
● Use the for_each loop

specifying the execution policy
● Function here is a simple

lambda but one can use any
other function

● To compile :

nvc++ -stdpar=gpu -Minfo=stdpar --std=c++20 test.cpp

Flag that specifies parallel execution on a GPU.

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

A simple example

25

#include <stdio.h>
#include <vector>
#include <execution>
#include <algorithm>
#include <ranges>

int main(){

 printf("Hello world from main ");
 auto v = std::views::iota(0,9);
 std::for_each(std::execution::par,
v.begin(), v.end(),
 [=](int i) {
 printf("%d,",i);
 });

 printf("\n");
}

● Include the necessary libraries
● Use the for_each loop

specifying the execution policy
● Function here is a simple

lambda but one can use any
other function

● To compile :

nvc++ -stdpar=gpu -Minfo=stdpar --std=c++20 test.cpp

Flag that instructs the compiler to produce messages that give
information about optimization decisions made during compilation

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Some considerations

26

● When using the parallel execution policy, make sure there are no data races or
deadlocks

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Some considerations

27

● When using the parallel execution policy, make sure there are no data races or
deadlocks

A deadlock is the situation where two or more
threads are unable to proceed because each is
waiting for the other to release a resource.

A data race occurs when two or more threads
access the same shared resource simultaneously,
and at least one of the accesses is a write
operation.

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Some considerations

28

● When using the parallel execution policy, make sure there are no data races or
deadlocks

● stdpar execution on GPU leverages CUDA Unified Memory, data needs to reside in heap
memory

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Some considerations

29

● When using the parallel execution policy, make sure there are no data races or
deadlocks

● stdpar execution on GPU leverages CUDA Unified Memory, data needs to reside in heap
memory

● std::vector works but std::array does not

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Some considerations

30

● When using the parallel execution policy, make sure there are no data races or
deadlocks

● stdpar execution on GPU leverages CUDA Unified Memory, data needs to reside in heap
memory

● std::vector works but std::array does not
● Unlike CUDA C++, functions do not need the __device__ annotation

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Some considerations

31

● When using the parallel execution policy, make sure there are no data races or
deadlocks

● stdpar execution on GPU leverages CUDA Unified Memory, data needs to reside in heap
memory

● std::vector works but std::array does not
● Unlike CUDA C++, functions do not need the __device__ annotation
● Execution on GPU requires random access iterators

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Some considerations

32

● When using the parallel execution policy, make sure there are no data races or
deadlocks

● stdpar execution on GPU leverages CUDA Unified Memory, data needs to reside in heap
memory

● std::vector works but std::array does not
● Unlike CUDA C++, functions do not need the __device__ annotation
● Execution on GPU requires random access iterators
● -stdpar currently has two options,

○ -stdpar=gpu (which is the default when not given an option) for parallel execution on
GPU

○ –stdpar=multicore for parallel execution on CPU

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Tips and tricks: Considering parallel execution

33

Problem
There is a std::vector I want to sort

std::vector<int> vec1;

{0,4,2,9,5,35,7,43,6}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Tips and tricks: Considering parallel execution

34

Problem
There is a std::vector I want to sort

std::vector<int> vec1;

{0,4,2,9,5,35,7,43,6}

Solution
Using standard algorithm std::sort

std::sort(vec1.begin(), vec1.end());

{0,2,4,5,6,7,9,35,43}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Tips and tricks: Considering parallel execution

35

Problem
There is a std::vector I want to sort

std::vector<int> vec1;

{0,4,2,9,5,35,7,43,6}

Solution
Using standard algorithm std::sort

std::sort(vec1.begin(), vec1.end());

{0,2,4,5,6,7,9,35,43}

But can I parallelize?

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Tips and tricks: Considering parallel execution

36

Problem
There is a std::vector I want to sort

std::vector<int> vec1;

{0,4,2,9,5,35,7,43,6}

Solution
Using standard algorithm std::sort

std::sort(vec1.begin(), vec1.end());

{0,2,4,5,6,7,9,35,43}

Solution with potential performance improvement
Using parallel execution and –stdpar to offload work and data to GPU

std::sort(std::execution::par, vec1.begin(),vec1.end());
nvc++ -stdpar=gpu ./main.cpp

{0,2,4,5,6,7,9,35,43}

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Tips and tricks: Considering parallel execution

37

Problem
There is a std::vector I want to sort

std::vector<int> vec1;

{0,4,2,9,5,35,7,43,6}

Solution
Using standard algorithm std::sort

std::sort(vec1.begin(), vec1.end());

{0,2,4,5,6,7,9,35,43}

Solution with potential performance improvement
Using parallel execution and –stdpar to offload work and data to GPU

std::sort(std::execution::par, vec1.begin(),vec1.end());
nvc++ -stdpar=gpu ./main.cpp

{0,2,4,5,6,7,9,35,43}

Something to keep in mind!
Not all problems do benefit
from parallelizing. Keep in mind
that there is an overhead for
data transfers to and from the
GPU

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Tips and tricks: Using -Minfo for compile time info

38

We already got introduced to some of the
compiler flag options of nvc++ :
nvc++ -stdpar=gpu -Minfo=stdpar --std=c++20 test.cpp

The output would look something like :
main:
13, stdpar: Generating NVIDIA GPU code
13, std::for_each with std::execution::par_unseq policy parallelized on
GPU

The messages can include useful information :
- about vectorization
- loop transformations
- how the compiler decides to parallelize certain

operations

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Tips and tricks: Use std::Views::iota for easy iterator

39

● Available in C++20
● Introduces low-level operations that are faster

than manually incrementing values in a loop
● Generates values on the fly
● More info in cpp reference

auto v = std::views::iota(0, 9);
std::for_each(std::execution::par_unseq, v.begin(), v.end(),
[=](int i){

printf("%d, ", threadIdx.x);
printf("%d, ", blockIdx.x);

})

We already got introduced to some of the
compiler flag options of nvc++ :
nvc++ -stdpar=gpu -Minfo=stdpar --std=c++20 test.cpp

The output would look something like :
main:
13, stdpar: Generating NVIDIA GPU code
13, std::for_each with std::execution::par_unseq policy parallelized on
GPU

The messages can include useful information :
- about vectorization
- loop transformations
- how the compiler decides to parallelize certain

operations
Note: Can access cuda specific variables if running on the GPU

https://en.cppreference.com/w/cpp/ranges/iota_view

Wrapping-up

40

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Overview of today's lecture
● C++ has been introducing ISOs standards over the past 25 years which ensure

consistency & portability across different compilers and platforms

● Today we went over some of the new features of C++ HPC ISO standards

● We can achieve parallel and vector concurrency via execution policies
○ nvc++ is the C++ compiler used which is provided by NVIDIA

● Careful evaluation of whether our algorithm would benefit from parallelization is
still needed since we still have the overheads of data-transfers

41

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Thursday

● We will hear a lot about CUDA
managed memory by a guest
lecturer from Fermilab!

42

Back-up

43

TAC-HEP : GPU programming module – Charis Kleio Koraka - October 15th 2024

Resources
1. NVIDIA Deep Learning Institute material link
2. 10th Thematic CERN School of Computing material link
3. Nvidia turing architecture white paper link
4. CUDA programming guide link
5. CUDA runtime API documentation link
6. CUDA profiler user's guide link
7. CUDA/C++ best practices guide link
8. NVidia DLI teaching kit link
9. https://tac-hep.org/assets/pdf/uw-gpu-fpga/2023_Stdpar_Cpp.pdf

10. Cpp reference https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

44

https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#device-memory-spaces-memory-spaces-cuda-device
https://developer.nvidia.com/teaching-kits
https://tac-hep.org/assets/pdf/uw-gpu-fpga/2023_Stdpar_Cpp.pdf
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t

