
Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU & FPGA module training

Week 3 : Introduction to CUDA

Lecture 6 - February 8th 2023

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

What we learnt in the previous lecture

● Learnt about the Nvidia GPU architecture
and explored the GPU characteristics

● Learnt about threads / blocks / grid
● Discussed about the CUDA core syntax
● Wrote our first “Hello world” CUDA kernel

2

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Today

Today we will learn about :
● Basic memory management
● More on synchronization
● Error handling

3

Memory management

4

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

The CUDA programming model
In the previous lecture we learnt about the three main steps
of a CUDA program :

● Copy the input data from CPU or host memory to the device
memory

● Execute the CUDA program
● Copy the results from device memory to host memory

5

We were able to run our first
“Hello World” CUDA program

What about
these steps ?

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

1. Copy data from host to device

6Image source [1]

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

2. Execute the CUDA program

7Image source [1]

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

3. Copy data from device back to host

8Image source [1]

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Memory management
● The host and device have their own separate memory:

○ Device pointers point to GPU memory
○ Host pointers point to CPU memory

● CUDA kernels operate out of device memory
● CUDA provides functions to allocate device memory, release device memory, and

transfer data between the host memory and device memory :

9

cudaMalloc(&ptr, size_in_bytes_to_allocate) cudaFree(ptr)

cudaMemcpy(destination_ptr,source_ptr, size_in_bytes, direction)

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Memory management
● Host pointers :

○ Typically not passed to device code
○ Typically not dereferenced in device code

● Device pointers :
○ Typically passed to device code
○ Typically not dereferenced in host code

For transfers between host and device memory the
direction can be :

● Copying data from CPU to GPU
● Copying data from GPU to CPU

10

Let’s take a
look at the
syntax of
cudamalloc

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Memory management
● Host pointers :

○ Typically not passed to device code
○ Typically not dereferenced in device code

● Device pointers :
○ Typically passed to device code
○ Typically not dereferenced in host code

For transfers between host and device memory the
direction can be :

● Copying data from CPU to GPU
● Copying data from GPU to CPU

11

Let’s take a
look at the
syntax of
cudamalloc

Remember the order for copying variables
from host ←→ device!

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

__global__ void vector_addition(const float *A, const float *B, float *C, int v_size) {

 int idx = threadIdx.x + blockDim.x * blockIdx.x;

 if (idx < v_size)

 C[idx] = A[idx] + B[idx];

}

12

Lets first start by writing our CUDA kernel :

● __global__ function declaration
● Must return void

A B C

Our CUDA kernel now has several arguments e.g. vectors A
and B, the resulting vector C and the vector size

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

__global__ void vector_addition(const float *A, const float *B, float *C, int v_size) {

 int idx = threadIdx.x + blockDim.x * blockIdx.x;

 if (idx < v_size)

 C[idx] = A[idx] + B[idx];

}

13

Lets first start by writing our CUDA kernel :

● __global__ function declaration
● Must return void

A B C

Our CUDA kernel now has several arguments e.g. vectors A
and B, the resulting vector C and the vector size

We express the vector index in
terms of thread and block ID

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

__global__ void vector_addition(const float *A, const float *B, float *C, int v_size) {

 int idx = threadIdx.x + blockDim.x * blockIdx.x;

 if (idx < v_size)

 C[idx] = A[idx] + B[idx];

}

14

Lets first start by writing our CUDA kernel :

● __global__ function declaration
● Must return void

A B C

Our CUDA kernel now has several arguments e.g. vectors A
and B, the resulting vector C and the vector size

We express the vector index in
terms of thread and block IDWe also want to make sure that we

don't go beyond our vector range

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

15

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s start writing our main function!

● We create the necessary host and device pointers

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

16

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s start writing our main function!

● We create the necessary host and device pointers
● Allocate the host pointer memory and fill the

vectors

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

17

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s start writing our main function!

● We create the necessary host and device pointers
● Allocate the host pointer memory and fill the

vectors
● Allocate the necessary memory for the device

pointers as well

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

18

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s start writing our main function!

● We create the necessary host and device pointers
● Allocate the host pointer memory and fill the

vectors
● Allocate the necessary memory for the device

pointers as well
● Copy data from host to device

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

19

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s start writing our main function!

● We create the necessary host and device pointers
● Allocate the host pointer memory and fill the

vectors
● Allocate the necessary memory for the device

pointers as well
● Copy data from host to device

● Launch the CUDA kernel

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

20

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s start writing our main function!

● We create the necessary host and device pointers
● Allocate the host pointer memory and fill the

vectors
● Allocate the necessary memory for the device

pointers as well
● Copy data from host to device

● Launch the CUDA kernel
● Copy data from the device back to

the host

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

21

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s start writing our main function!

● We create the necessary host and device pointers
● Allocate the host pointer memory and fill the

vectors
● Allocate the necessary memory for the device

pointers as well
● Copy data from host to device

● Launch the CUDA kernel
● Copy data from the device back to

the host
● Delete the pointers in order to

free the host and device memory

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

22

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s put this all together!

ssh <username>@login.hep.wisc.edu
ssh g38nXX
touch vector_addition.cu
Copy this into the .cu file
export LD_LIBRARY_PATH=/usr/local/cuda/lib
export PATH=$PATH:/usr/local/cuda/bin
nvcc vector_addition.cu -o vector_addition
./vector_addition

Exercise

● Lets try changing the grid/block
size.

● How can we ensure that the
number of threads is enough ?

https://docs.google.com/document/d/1lXByVN7h9WCpP1RkRe1eV4QQ0OVSXbizfobt1mdHTBw/edit?usp=sharing

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Practical example : Adding two vectors

23

A B C
 float *h_A, *h_B, *h_C, *d_A, *d_B, *d_C;

 h_A = new float[DSIZE];

 h_B = new float[DSIZE];

 h_C = new float[DSIZE];

 for (int i = 0; i < DSIZE; i++) {

 h_A[i] = rand()/(float)RAND_MAX;

 h_B[i] = rand()/(float)RAND_MAX;

 h_C[i] = 0;

 }

 cudaMalloc(&d_A, DSIZE*sizeof(float));

 cudaMalloc(&d_B, DSIZE*sizeof(float));

 cudaMalloc(&d_C, DSIZE*sizeof(float));

 cudaMemcpy(d_A, h_A, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_B, h_B, DSIZE*sizeof(float), cudaMemcpyHostToDevice);

 vector_addition<<<grid_size, block_size>>>(d_A, d_B, d_C, DSIZE);

 cudaMemcpy(h_C, d_C, DSIZE*sizeof(float), cudaMemcpyDeviceToHost);

 free(h_A);

 free(h_B);

 free(h_C);

 cudaFree(d_A);

 cudaFree(d_B);

 cudaFree(d_C);

Let’s put this all together!

ssh <username>@login.hep.wisc.edu
ssh g38nXX
touch vector_addition.cu
Copy this into the .cu file
export LD_LIBRARY_PATH=/usr/local/cuda/lib
export PATH=$PATH:/usr/local/cuda/bin
nvcc vector_addition.cu -o vector_addition
./vector_addition

Exercise

● Lets try changing the grid/block
size.

● How can we ensure that the
number of threads is enough ?

gridSize = (Length of vector + Block size - 1) / Block size

https://docs.google.com/document/d/1lXByVN7h9WCpP1RkRe1eV4QQ0OVSXbizfobt1mdHTBw/edit?usp=sharing

Synchronization

24

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Synchronization
● In the previous lecture we learnt that CUDA kernel

calls are asynchronous :
○ Once the kernel is launched the main program

that is executed on the CPU continues normally
● Additionally, execution order of blocks on a SMs is

arbitrary
○ We need a way to synchronise!

● We saw that call to CudaDeviceSynchronize() from
host blocks the CPU execution until all work launched
on the device has finished.

● Includes both:
○ kernel launches
○ memory copies

25

Grid level synchronization

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Synchronization
For each kernel launch with N threads/block & M blocks :

● Execution order of threads within one block is
arbitrary :
○ Only exception are threads in the same warp

which are processed simultaneously
● We might have a problem, where we require all

threads in a specific block to have completed
execution of a specific task before continuing the
next task

● To synchronize threads within one block one can call
__syncthreads() within the kernel

26

Block level synchronization

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Synchronization
For each kernel launch with N threads/block & M blocks :

● Execution order of threads within one block is
arbitrary :
○ Only exception are threads in the same warp

which are processed simultaneously
● We might have a problem, where we require all

threads in a specific block to have completed
execution of a specific task before continuing the
next task

● To synchronize threads within one block one can call
__syncthreads() within the kernel

27

● Let’s try and change a bit the
add_vector kernel

● What can we do that would need
block level synchronization?

Exercise

Error handling

28

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Error handling
● Error codes can be converted to a human-readable error messages with the following CUDA run- time function:

char* cudaGetErrorString(cudaError_t error)

● A common practice is to wrap CUDA calls in utility functions that manage the error returned :

● To detect errors in a kernel launch, we can use the API call cudaGetLastError() which returns the error code
for whatever the last CUDA API call was.

cudaError_t err = cudaGetLastError();

● For errors that occurs asynchronously during the kernel launch, cudaDeviceSynchronize() has to be invoked
after the kernel in order to return any errors associated with the kernel launch.

29

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Error handling
// error checking macro

#define cudaCheckErrors(msg) \

 do { \

 cudaError_t __err = cudaGetLastError(); \

 if (__err != cudaSuccess) { \

 fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \

 msg, cudaGetErrorString(__err), \

 __FILE__, __LINE__); \

 fprintf(stderr, "*** FAILED - ABORTING\n"); \

 exit(1); \

 } \

 } while (0)

30

We can define a utility function
outside of our main program to help
us check for CUDA errors

Lets try this out !
● You can copy this from here

into our script.
● Let's add a mistake somewhere
● Let’s compile and run our script

without error-checking
○ What do you observe?

● Lets add error-checking
○ What happened now?

https://docs.google.com/document/d/1cFi-mei40B8F_8YgjxbzlzOX80RPpMr1ccTwRAhz1Xg/edit?usp=sharing

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Compilation
● Compiling a CUDA program is similar to compiling a

C/C++ program.
● Cuda code should be typically stored in a file with

extension .cu
● NVIDIA provides a CUDA compiler called nvcc :

○ nvcc is called for CUDA parts
○ gcc is called for c++ parts
○ nvcc converts .cu files into C++ for the host system

and CUDA assembly or binary instructions for the
device

● Usage :

nvcc myCudaProgram.cu -o myCudaProgram

31Image source [i]

https://www.researchgate.net/figure/CUDA-program-compilation-process-using-NVCC_fig5_321368813

Wrapping-up

32

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Overview of today's lecture

● We learnt how to copy data to and from the host and the device
○ We wrote our first CUDA program that adds two vectors!

● We discussed the different levels of synchronization
○ Block level & grid level

● Error handling :
○ We learnt how to check for errors in our GPU programm

33

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Assignment for next week
● Assignment can be found here (Week 2) :

https://github.com/ckoraka/tac-hep-gpus

● To clone :
○ git clone git@github.com:ckoraka/tac-hep-gpus.git

● Due Friday February 17th

● Please upload assignment here :
○ https://pages.hep.wisc.edu/~ckoraka/assignments/TAC-HEP/
○ Upload only 1 .pdf file with all exercises
○ If you also have your code on git, please add the link to your repository

in the pdf file you upload.

34

https://github.com/ckoraka/tac-hep-gpus
https://pages.hep.wisc.edu/~ckoraka/assignments/TAC-HEP/

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Next week
We will dive deeper into CUDA
● Optimizing the number of threads and

blocks
● Synchronization at grid and block level
● Memory access patterns and coalesced

memory accesses
● Static and dynamic shared memory
● Optimizing memory performance
● Race conditions and atomic operations
● The default CUDA stream

35

Back-up

36

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 8th 2023

Resources
1. NVIDIA Deep Learning Institute material link
2. 10th Thematic CERN School of Computing material link
3. Nvidia turing architecture white paper link
4. CUDA programming guide link
5. CUDA runtime API documentation link
6. CUDA profiler user's guide link

37

https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#

