
Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU & FPGA module training

Week 2 : Introduction to C++

Lecture 4 - February 1st 2023

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

What we learnt in the previous lecture

● History of C++
● Brushed up on :

○ Core syntax
○ Variables & Operators
○ Control instructions
○ Functions

2

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Today

● Scopes / namespaces
● Compound data types
● Object Orientation
● The C++ compilation chain

3

Scopes and namespaces

4

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Scope in C++

5

Scope → portion of the source code where a given
variable can be accessed / declared / used etc :

● Typically
○ simple block of code, within {}
○ function, class, namespace
○ translation unit for global declarations

● Resources are allocated when a e.g variable is
declared

● Resources are then freed at the end of a scope

{

 int a;

 {

 int b;

 } // end of b scope

} // end of a scope

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Scope of variables in C++

6

Mainly two types of variable scopes :

● Local Variables
○ Are declared inside a block
○ Cannot be accessed or used outside that

block
● Global Variables

○ Declared outside of all of the functions and
blocks, at the top of the program.

○ Can be accessed from any portion of the
program.

#include<iostream>

using namespace std;

int global = 1; // Global variable

int main()

{

 int local = 2; // Local variable

 cout<<"Global var : "<<global;

 cout<<" and Local var : "<<local;

 return 0;

}

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Namespaces (1)

7

● declarative region that provides a scope to the identifier
● allow to segment code to avoid name clashes
● especially useful when your code base includes multiple libraries
● can be embedded to create hierarchies using the ’::’ separator

Syntax

namespace namespace_name
{
 declarations
}
Usage
namespace_name::namespace_members

std namespace

● The std is a short form of standard
● the std namespace contains the built-in

classes and declared functions.
● e.g. list , vector , cout etc.

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Namespaces (2)

8

Namespaces can also be nested. Usage :

● A::a (outer namespace)
● A::B::a (inner namespace)

namespace A {

 int a;

 void func() {

 cout << "Namespace A" << endl;

 }

}

namespace B {

 int a;

 void func() {

 cout << "Namespace B" << endl;

 }

}

namespace A {

 int a;

 namespace B {

 int a;

 }

}

Exercise : Lets try this out!
● Open onlinegdb
● Copy the above two namespaces
● Let's call them from main and

checkout the results!

https://www.onlinegdb.com/online_c++_compiler

Compound data types

9

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

What are compound data types?

10

A compound type is a type that is defined in terms of another type.

There are many compound data types in C++ :

● Arrays
● Functions
● Pointers
● References
● Structs & class types
● Enumerations

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Arrays

11

● Series of elements of the same type placed in
contiguous memory locations

● Elements can be individually referenced by adding
an index to a unique identifier.

● Can be static or dynamic
○ Size of static arrays is determined when the

data structure is defined or allocated.
○ Dynamic arrays allows individual elements to

be added or removed (e.g. std::list m
std::vector)

● Syntax of static arrays: type name [elements]
● Arrays can also be multidimensional

// Defined values

int values[] = {0, 1, 2};

// Fixed-length with

undefined values

int values[3];

int mult[2][3]

i

j

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

j

i

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Pointers (1)

12

Pointer → variable that stores the memory address of a
variable as its value.

● Syntax type* pointer_variable;
○ * → dereference operator

● Variable address can be obtained by preceding the name
of a variable with the Address-of operator (&) e.g.
ptr_variable = &variable;

int number = 5;

int* ptr_number = &number;

5

number

0x7ffc7ef28a0c

ptr_number
0x7ffc7ef28a0c 0x7ffcc40943e0 0x7ffd52ce74940x7fffe4843848

… …

… …

&

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Pointers (2)

13

int number = 5;

int* ptr_number = &number;

cout << number << "\n";

cout << &number << "\n";

cout << ptr_number << "\n";

● Pointer should be initialized to point to
a valid address

● If a pointer doesn’t point to anything,
set it to nullptr (i.e. int* ip = nullptr)

Pointer → variable that stores the memory address of a
variable as its value.

● Syntax type* pointer_variable;
○ * → dereference operator

● Variable address can be obtained by preceding the name
of a variable with the Address-of operator (&) e.g.
ptr_variable = &variable;

Exercise : Lets try this out!
● Open onlinegdb
● Copy the snippet
● Lets see what is printed out

https://www.onlinegdb.com/online_c++_compiler

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Pointers (3)

14

A function which accepts
a pointer, can also accept
an array as an argument :

float getAverage(int *arr, int size) {

 int sum = 0;

 float avg;

 for (int i = 0; i < size; ++i)

 sum += arr[i];

 avg = double(sum) / size;

 return avg;

}

int main () {

 int balance[5] = {1, 2, 3, 4, 5};

 float avg;

 // pass pointer to the array as an argument.

 avg = getAverage(balance, 5) ;

 cout << "Average value is: " << avg << endl;

 return 0;

}

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

References

15

● References allow for direct access to another
object

● They can be used as shortcuts / better
readability

● References should always refer to an object and
should be initialized when created

● Once a reference is initialized to an object, it
cannot be changed to refer to another object.

● They can be declared const to allow only read
access

● They can be used as function arguments

 int a;

 int& ref_a = a;

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Pointers vs References

16

● Pointers can be null
● We can change the variable

that a pointer points to
● They indicate that the value

of a variable can be
modified

● If memory is not released, a
memory leak can develop

● Prone to segfaults

Pointers References

● References can never be null &
needs to be initialized during
declaration.

● After initialization, cannot change
the reference to reference another
variable.

● Can be declared const to allow only
read access

References are preferred
with respect to pointers

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Structures

17

● A data structure (struct) is a group of
data elements grouped together under
one name.

● These data elements are referred to as
members

● Members can have different types and
different lengths.

Syntax :
struct type_name {

member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
….

} object_names;

Declaration :
struct Person {

 unsigned char age;

 float weight;

};

Usage :
Person charis;

charis.age = 29;

charis.weight = 55.5;

Specifying Object_names
is optional

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Enumerations

18

● An enumeration (enum) is a distinct
type whose value is restricted to a
range of values

● These may include several explicitly
named constants → enumerators

● An enum variable takes only one value
out of many possible values

#include <iostream>

using namespace std;

enum month { January, February, March, April,

May, June, July, August, September,

October, November, December };

int main()

{

 month thisMonth;

 thisMonth = January;

 cout << "Month " << thisMonth;

 return 0;

}

What do you think will be printed? Lets
see :
● Open onlinegdb
● Copy the snippet & run!

https://www.onlinegdb.com/online_c++_compiler

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Enumerations

19

● An enumeration (enum) is a distinct
type whose value is restricted to a
range of values

● These may include several explicitly
named constants → enumerators

● An enum variable takes only one value
out of many possible values

#include <iostream>

using namespace std;

enum month { January, February, March, April,

May, June, July, August, September,

October, November, December };

int main()

{

 month thisMonth;

 thisMonth = January;

 cout << "Month " << thisMonth;

 return 0;

}

You can change the default value of an enum element during declaration e.g.

enum month { January=1, February=2, March=3, April=5,

May=8, June=15, July=20, August=35, September=40,

October=50, November=60, December=70

};

Object Orientation

20

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Object Oriented vs Functional programming

21

● Object oriented programming (OOP)
groups related functions and their
variables into objects.

● Imperative programming paradigm
○ Update the running state of the

program
● Based on the following principles :

○ Encapsulation
○ Abstraction
○ Inheritance
○ Polymorphism

● Functional programming is paradigm
where programs are constructed by
composing and making use of functions

● Declarative programming paradigm
○ Maps values to other values

● Efficient
○ Code is reusable

● Allows parallel programming
● Allows for modular code

https://en.wikipedia.org/wiki/Function_application

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Object Oriented Programming principles

22

● OOP groups related functions and their
variables into objects.

● Imperative programming paradigm
○ Update the running state of the

program
● Based on the following principles :

○ Encapsulation
○ Abstraction
○ Inheritance
○ Polymorphism

● Ability to group data along with
properties and methods that operate
on the data in a common unit

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Object Oriented Programming principles

23

● OOP groups related functions and their
variables into objects.

● Imperative programming paradigm
○ Update the running state of the

program
● Based on the following principles :

○ Encapsulation
○ Abstraction
○ Inheritance
○ Polymorphism

● Ability to represent data at a very
conceptual level without any details.

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Object Oriented Programming principles

24

● OOP groups related functions and their
variables into objects.

● Imperative programming paradigm
○ Update the running state of the

program
● Based on the following principles :

○ Encapsulation
○ Abstraction
○ Inheritance
○ Polymorphism

● A class can be derived from a base class
with all features of base class and some
of its own.

● Increases code reusability

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Object Oriented Programming principles

25

● OOP groups related functions and their
variables into objects.

● Imperative programming paradigm
○ Update the running state of the

program
● Based on the following principles :

○ Encapsulation
○ Abstraction
○ Inheritance
○ Polymorphism

● Ability to exist in various forms
● Functions with the same name can be

overloaded to perform different tasks

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Classes

26

● Expanded concept of C structures:
○ Contain data members but also

contain functions as members
→ methods

○ Access control (public/private/
protected)

○ Inheritance
● Object : Class instance
● A class encapsulates a concept :

○ implementation
○ properties
○ possible interactions
○ construction and destruction

● Syntax :

class class_name {
 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...
} object_names;

Access specifiers

Members : data or
function declarations

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Implementing methods

27

#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y) {
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

Class Rectangle has 2 data members
width, height and two methods
set_values & area

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Implementing methods

28

#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y) {
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

Class Rectangle has 2 data members
width, height and two methods
set_values & area

Methods :
● Usually implemented outside of class

declaration
● Use the class name as namespace
● When reference to the object is

needed, use this keyword

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Implementing methods

29

#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y) {
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

Class Rectangle has 2 data members
width, height and two methods
set_values & area

Methods :
● Usually implemented outside of class

declaration
● Use the class name as namespace
● When reference to the object is

needed, use this keyword
○ this->width = x;

In main, syntax to construct a class object
and access its members & methods

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Overloading

30

● A class can have multiple functions
with the same name but different
parameters

#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 void set_values (int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y) {
 width = x;
 height = y;
}
void Rectangle::set_values (int x) {
 width = x;
 height = x;
}

int main () {
 Rectangle rect;
 rect.set_values(3);
 cout << "area: " << rect.area();
 rect.set_values(3,4);
 cout << "area: " << rect.area();
 return 0;
}

Exercise : Lets try this out!
● Open onlinegdb
● Copy the snippet
● Lets see what is printed out
● Can you think of/try out another

function overload?

https://www.onlinegdb.com/online_c++_compiler

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Inheritance

31

● C++ classes can be extended creating new
classes which retain characteristics of the original
class

● Base class
○ Original class from which the derived class

inherits the members
● Derived class:

○ The derived class inherits the members of
the base class

○ Additionally can have its own new
members

● Derived classes are defined using the following
syntax :

class derived_class_name: public base_class_name

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b;}

};

class Rectangle: public Polygon {

 public:

 int area ()

 { return width * height; }

};

Derived class
New member

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Constructors & Destructors

32

● Special functions used for
building/destroying an object

● A class can have several constructors
● The constructors have the same name

as the class
● The constructors have the same name

as the class but have a leading ∼

class Rectangle {

 int width, height;

 public:

 Rectangle ();

 Rectangle (int,int);

 int area (void) {return (width*height);}

 ~Rectangle (){};

};

Rectangle::Rectangle () {

 width = 5;

 height = 5;

}

Rectangle::Rectangle (int a, int b) {

 width = a;

 height = b;

}

Rectangle class has 2 constructors

Rectangle class destructor

Compilation

33

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

How is a C++ code compiled
Compiler

● Utility program that translate
user code into machine code

● Compilation is performed in
several steps

● Simplest command :

g++ helloWorld.cpp -o helloWorld

34

Editor / IDE

Preprocessor

Compiler

Linker

Loader

Executable

Editor / IDE
● First step is to write our

C++ code
● We can use a text editor

(vim, nano etc.) or an IDE
(Integrated development
environment i.e. vscode,
eclipse etc.)

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

How is a C++ code compiled
Compiler

● Utility program that translate
user code into machine code

● Compilation is performed in
several steps

● Simplest command :

g++ helloWorld.cpp -o helloWorld

35

Editor / IDE

Preprocessor

Compiler

Linker

Loader

Executable

he preprocessor
handles the # directives (macros, includes)
creates the source code

Preprocessor
● Performed before

compilation
● The result of preprocessing is

a single file which is then
passed to the actual compiler

● The preprocessor handles the
directives (macros,
includes) and creates the
source code.

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

How is a C++ code compiled
Compiler

● Utility program that translate
user code into machine code

● Compilation is performed in
several steps

● Simplest command :

g++ helloWorld.cpp -o helloWorld

36

Editor / IDE

Preprocessor

Compiler

Linker

Loader

Executable

he preprocessor
handles the # directives (macros, includes)
creates the source code

Compiler
● The compilation takes

place on the preprocessed
files.

● The compiler parses the
C++ source code and
converts it into assembly &
machine code.

● The produced object file
contains the compiled code
(in binary form)

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

How is a C++ code compiled
Compiler

● Utility program that translate
user code into machine code

● Compilation is performed in
several steps

● Simplest command :

g++ helloWorld.cpp -o helloWorld

37

Editor / IDE

Preprocessor

Compiler

Linker

Loader

Executable

he preprocessor
handles the # directives (macros, includes)
creates the source code

Linker
● Takes all the object files

generated by the compiler
and combine them into a
single executable program.

● Links external library files.
● Makes sure all cross-file

dependencies are properly
resolved.

Build steps

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

How is a C++ code compiled
Compiler

● Utility program that translate
user code into machine code

● Compilation is performed in
several steps

● Simplest command :

g++ helloWorld.cpp -o helloWorld

38

Editor / IDE

Preprocessor

Compiler

Linker

Loader

Executable

he preprocessor
handles the # directives (macros, includes)
creates the source code

Loader
● Loader is generally part

of the operating system
● Loads the executable

into memory

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

How is a C++ code compiled
Compiler

● Utility program that translate
user code into machine code

● Compilation is performed in
several steps

● Simplest command :

g++ helloWorld.cpp -o helloWorld

39

Editor / IDE

Preprocessor

Compiler

Linker

Loader

Executable

he preprocessor
handles the # directives (macros, includes)
creates the source code

Executable
We are now ready to run the
executable!

To do so :
./helloWorld

Run steps

Wrapping-up

40

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Overview of today's lecture
● We learnt about what a scope is in C++
● We discussed about namespaces

○ std → standard library in C++ provides many facilities that can be used
● We learnt about compound data types
● We got familiar with Object Oriented programming and classes
● We got familiar with the C++ compilation chain

41

https://en.cppreference.com/w/cpp/standard_library

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Assignment for next week
● Assignment can be found here :

https://github.com/ckoraka/tac-hep-gpus

● To clone :
○ git clone git@github.com:ckoraka/tac-hep-gpus.git

● Due Friday February 10th

● Please upload assignment here :
○ https://pages.hep.wisc.edu/~ckoraka/assignments/TAC-HEP/
○ Upload only 1 .pdf file with all exercises
○ If you also have your code on git, please add the link to your repository

in the pdf file you upload.

42

https://github.com/ckoraka/tac-hep-gpus
https://pages.hep.wisc.edu/~ckoraka/assignments/TAC-HEP/

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Next week
● We will get introduced to the CUDA programming model :

○ Concept of parallelization
○ Threads & blocks
○ CUDA core syntax
○ GPU memory hierarchy
○ Basic memory management
○ Error handling

43

Back-up

44

TAC-HEP : GPU & FPGA training module – Charis Kleio Koraka - February 1st 2023

Resources
● cplusplus docs link

● cppreference docs link

● CERN C++ course link

45

https://cplusplus.com/
https://en.cppreference.com/w/
https://indico.cern.ch/event/1019089/attachments/2208548/3917056/C++Course.pdf

