@ High Energy Physics

Traineeships in Advanced
Computing for High Energy
Physics (TAC-HEP)

GPU & FPGA module training

Week ¢ : Introduction to C+

Lecture 3 - January 31% 2023

'WELCOMEBACK

iy =
T0 THAT MAGICAL‘PLACECALLED

imgflip.com

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

What we learnt in the previous lecture

e Hardware accelerators can be used in combination with CPUs to executing
specific tasks more efficiently

e GPUs are hardware accelerators that follow the SIMT paradigm
o Have thousands of cores and therefore can provide massive parallelization
o Can provide more FLOPS/watt that CPUs
e The next decades will pose a significant computing challenge for HEP experiments

o Many HEP experiments are already exploring the use of accelerators and
heterogeneous computing

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

Today : Some brushing up of C+

History of C++

Core syntax

Variables & Operators
Control instructions
Functions

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

History of (+

1978

1980

1985

C inventor C++ inventor

e Multi-paradigm programming language that
supports object-oriented programming

e Based on Clanguage developed by Dennis Ritchie

e Designed at Bell labs in the late 70s by Bjarne
Stroustrup

1998

2011

2014

2017

2020
TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023 5

Image taken from [3]

Why is C++ so widely used

Fast
o C++ is a compiled language unlike other languages e.g. python / Java which are
interpreted
Object oriented
o Modular and reusable code
e Low level
o Closer to hardware / allows low level optimization
e Many available libraries
o Standard Template Library (STL) provides template that can be used from the

developer and make coding faster - S

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

Core syntax

Structure of a (+ program

Let's look into the main structure and components of a C++ program by
checking out a simple program that print out “Hello world"” ;

#include <iostream>

int main()
{

std: :cout << "Hello World!";
}

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

Structure of a (+ program

<iostream>

e Special lines interpreted
before compilation

e Instruct the preprocessor to
include a section of standard
C++ code

e e.g jostream allows standard
I/0 operations

#include <iostream>

int main()

{

std::cout << "Hello World!'";

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

Structure of a (+ program

<iostream>

e Special lines interpreted
before compilation

e Instruct the preprocessor to
include a section of standard
C++ code

e e.g jostream allows standard
I/0 operations

#include <iostre#m>

int main()

{

std: :cout << "Hello World!'";

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

int main()

e Special C++ function
e All C++ programs start
execution from main

10

Structure of a (+ program

<iostream>
Special lines interpreted
before compilation
Instruct the preprocessor to
include a section of standard
C++ code
e.g iostream allows standard
I/0 operations

#include <iostr

int main()

{

stde:zcout <<

TAC-HEP : GPU & FPGA training module - Ch

m=>

"Hello World!'";

\

int main()

e Special C++ function
e All C++ programs start
execution from main

std::cout << “Hello World";

e (++ statement:

o std:cout standard
character output

“Hello World” string of
characters that will be
outputted

<<insertion operator

; every statement
should end with a
semi-colon

aris Kleio Koraka - January 31% 2023

11

Structure of a (+ program

<iostream>
Special lines interpreted
before compilation
Instruct the preprocessor to
include a section of standard
C++ code
e.g iostream allows standard
I/0 operations

#include <iostr

int main()

{

Curly braces enclose the

body of a function

/!

stde:zcout <<

}

int main()

e Special C++ function
e All C++ programs start
execution from main

m=>

"Hello World!'";

\

std::cout << “Hello World";

e (++ statement:

o std:cout standard
character output

“Hello World” string of
characters that will be
outputted

<<insertion operator

; every statement
should end with a
semi-colon

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

12

Comments in (+

Line comment

Block comment

doxygen compatible comments : tool for generating documentation from annotated C++ sources [documentation]

\fn
\brief
\param i

\return

Useful and important tool since
it makes code more readable
and easier to share

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

13

https://www.doxygen.nl/

Variables and operators

Variables

e Variable — portion of memory used to
store a value.
e Name of variable —ldentifier
o Combination of letters, digits, or
underscore characters
o C++ keywords cannot be used

Size Number
8-bit 28
16-bit 216
32-bit 232

64-bit 264

Variable types

Character

Integer

Floating-point

Boolean

Names

char

char16 _t
char32_t

int

(un)signed char
(un)signed int
short/long (int)

float

double

bool

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

Example

char ¢ = 'a'
l16-bit wide
32-bit wide

int i = 2023
8-bit wide

32-bit wide
16-bit wide

float £ = 2.023f
32-bit wide
double d = 2.023
64-bit wide

bool a = true

bool b false

15

Operators

Operators can operate
on variables

There are many types
some of which are
summarized in the table

Types
Assignment operator

Arithmetic operators
Compound assignment
Increment and decrement
Relational and comparison

Logical

Conditional ternary
operator

Bitwise operators

Operators

+I_I*I/l%

+=, -5, *:, /:, %:,
>>:, <<:I &:, /\:, |:

++,--
==, !=I >I <I >:I <=

! &, | |

&r |I AI = <<I >>

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

Usage
Assign value to variable
Mathematical operations

modify the current value by
performing an operation

equivalent to +=1 & -=1

Comparisons of two
expressions

not /and/ or
Returns different value if
expression is true or false
Syntax :

condition ? result1 : result2

modify variables
considering the bit patterns

16

Operators

#include <iostream>

int main ()

{
int a,b,c;
bool d;

o,
Il
~J
\

\
a1

cout <<"
cout <<"
cout <<"
cout <<"

0O Q O W

using namespace std;

<<
<<
<<
<<

0 Q O o

<<
<<
<<
<<

What are the values
of variables a,b,c & d?

Let's check using
onlinegdb

"\n';
'"\n';
"\n';
'"\n';

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023 17

https://www.onlinegdb.com/online_c++_compiler

Operators

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

18

Control flow

Flow control instructions

Statement :
e Individual instructions of the program
e End with a semicolon (})
e Executed in the order in which they appear in the program

Control instructions :
e Redirect the flow of a program
e Many types - some include :
o if/else
o Conditional operator (?)
o switch

o forloop/range based loops / while loops
TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

20

If...else

e Syntax : if (condition) statement

o condition is evaluated
if (x > 0)

| - o If condition true, statement is
cout << "x 1s positive";

else if (x < 0) executed

cout << "x is negative" ; e clseandelse if areoptional
else e clse if can berepeated

S e braces are optional if there is a

single instruction

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023 4

Switch

switch (oper) {

case '+':
cout <<
break;
case '-':
cout <<
break;
case '*':
cout <<
break;
case '/':
cout <<
break;
default:
cout <<

break;

a / b;

"Incorrect

Let's add this to our
code on onlinegdb

operator" ;

Syntax :

switch(identifier) {
case c1 : instructions; break;
case c2 : instructions2; break;

default : instructionsd; break;

}

switch evaluates expression / checks if it
is equivalent to case c1

If true, instructions1 are executed

After break the program jumps to the end
of switch

Execution carries on with the next case if
no break is present

Default is optional

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023 20

https://www.onlinegdb.com/online_c++_compiler

Syntax :
O r ‘ O 0 p for(initializations; condition; increments) {statement}

e Initializations and increments are separated by

£ ' =10 ¢ >0; —-—
or (int n=10; n>0; n--) { acomma
cout <K n <« ", ";

e I|nitializations can contain declarations

start
for (n=0, i=100 ; n!=i ; ++n, —--i){ I
cout << "n="<< n << " and i=" << 1 << "\n"; +

}

True

condition —» statement

for(int 1 = 0, j =0 ; 1 < 10 ; i++, j = 2*1) Falsel

cout << "2*" << i << " is " << J << "\n";

end

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023 23

Range hased loop Syntax:

for (type iterator : container) statement;

e iterates over all the elements in the
string str {"Hello World!"}; container

SO (Clieke O 8 St e simplifies loops tremendously especially

{ with STL container
cout << u[u <L o << u]u;

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

24

Range hased loop Syntax:

for (type iterator : container) statement;
e iterates over all the elements in the

string str {"Hello World!"}; container

for

{

cout <<

(char c

" I:"

sStr)

<K ¢ <KL

e simplifies loops tremendously especially
with STL container

H:IH;

Exercise : Lets try this out!
e Open anew window in onlinegdb
e C(Create an array with 5 elements -
your favorite integer numbers
e (alculate their sum using a range
based loop and print out the result!

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

25

https://www.onlinegdb.com/online_c++_compiler

While loop

int n = 10;
while (n>0) {
cout << n << ", ";

int n = 10;

do |

cout << n << ", ";
——n:

} while (n>0);

TAC-HEP

Syntax :
while (condition) statement
e Condition evaluated before first
iteration
do statement while (condition);
e Condition evaluated after first

iteration

GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

26

While loop

Do — While
start start Statement is always executed
I once
¢ e Condition is checked after the

statement is executed

v

-
True statement
conditon —— | statement ¢
True
| condition —
False
Whlle
d Statement is executed
en after checking the False ‘
condition
e Similar to for loop end
flowchart

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

Functions

28

What is a function

e Group of statements that is given a name and can be called from some point of the
program
Allow to structure programs in segments of code
Make code reusable

Syntax :

type name (parameterl, parameter2, ...) { statements }

- type : type of the value returned by the function.

- name : function identifier

- parameters : type followed by an identifier, (e.g. int parameter1) arguments are passed to
the function from the location where the function is called from.

- statements : block of statements surrounded by curly braces

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

29

Some examples of functions

#include <iostream> Function that takes two arguments
using namespace std; .

and returns an integer
int addition (int a, int Db)

{

int kr); Function that takes one arguments
r=a+b;
return r; and returns nothing (void)

}

void print (int a)
{
cout<<"The number is " <<a<<endl;

}

int main () . .
{ main function — program always

int z; starts from main
z = addition (5,3);

print(z) ;
} TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

30

Function parameters

Function parameters can be passed :

int b)

* By value int addition (int a,
e By reference {

int r;

r=a+t+b;

return r;
}

int addition (int &a, int &b)

{

int r;

r=at+b;
return r;

}

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

i1

Function parameters

Passed by value:

O

Parameters are copied into the
variables represented by the
function parameters

Modifications of these variables
within the function has no effect on
the values of the variables outside
the function

By default arguments are passed by
value (= copy, good for small types,
e.g. numbers)

int addition (int a, int b)
{

int r;

r=a+b;

return r;

}

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

32

Function parameters

e Passed by reference:

(@)
(@)

also called pass by address
The parameters a and b are still local
to the function, but they are reference
variables (i.e. nicknames to the original
variables passed
Allows the function to modify a
variable without having to create a
copy of it
references are preferred to avoid
copies
const can be used for safety e.g.

[| int addition (const int &a)

m Ensures that variable cannot be

changed

int addition (int &a, int &b)
{

int r;

r=a+b;

return r;

}

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

33

Function parameters

e Passed by reference:

o also called pass by address

o The parameters a and b are still local
to the function, but they are reference
variables (i.e. nicknames to the original
variables passed

o Allows the function to modify a
variable without having to create a

copy of it
o references are preferred to avoid
copies
o const can be used for safety e.g.
[| int addition (const int &a)

m Ensures that variable cannot be
changed

Exercise : Lets try this out!

Write a function that takes two
integer arguments and returns
nothing

Change the value of each variable
to its square

Print the values of the argument in
the main function

Try passing the variables by value
and by reference - what do you
observe?

Try making a variable const. What
do you observe?

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

34

Wrapping-up

Overview of today’s lecture

Learnt about the history of C++ and why it is widely used
Brushed up C++ core syntax

Went through the different variables types & operators
Were reminded of C++ flow control instructions & functions

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023

36

Tomorrow

e We will continue with :

o Scopes/namespaces

o Compound data types

o Object Orientation

o The C++ compilation chain

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023 37
D

Back-up

38

Resources

1. cplusplus docs |ink

2. cppreference docs link

3. CERN C++ course link

TAC-HEP : GPU & FPGA training module - Charis Kleio Koraka - January 31% 2023 39
D

https://cplusplus.com/
https://en.cppreference.com/w/
https://indico.cern.ch/event/1019089/attachments/2208548/3917056/C++Course.pdf

