

s
KB

Ay C

C\E\R/Dl overview

- i
2% ¥

ok
A

* yesterday we have seen

what performance portability means and discovered the
Alpaka library

how to set up Alpaka for a simple project
how to compile a single source file for different back-ends
what are Alpaka platforms, devices, queues and events

* today we will learn
how to work with host and device memory
how to write device functions and kernels

how to use an Alpaka accelerator and work division to . R ad :
launch a kernel i e |

and see a complete example!

March 8th, 2023

2/30

https://creativecommons.org/licenses/by-sa/4.0/

memory operations

Buffers and Views
* canrefer to memory on the host or on any device

- general purpose host memory (e.g. as returned by malloc or new)
- pinned host memory, visible by devices on a given platform (e.g. as returned by cudaMallocHost)
- global device memory (e.g. as returned by cudaMalloc)

* can have arbitrary dimensions
* 0-dimensional buffers and views wrap and provide access to a single element:

float x
float y

*buffer;
buffer->pt();

* 1-dimensional buffers and views wrap and provide access to an array of elements:

float x = buffer[i];

* N-dimensional buffers and views wrap arbitrary memory areas:

float* p = std::data(buffer);

— expect a nicer accessor syntax with c++23 std: :mdspan and improved operator[]

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

memory buffers

* buffers own the memory they point to

* ahost memory buffer can use either standard host memory, or pinned host memory mapped to be
visible by the GPUs in a given platform

* abuffer knows what device the memory is on, and how to free it

* buffers have shared ownership of the memory
* like shared ptr<T>
* making a copy of a buffer creates a second handle to the same underlying memory
 the memory is automatically freed when the last buffer object is destroyed (e.g. goes out of scope)

- with queue-ordered semantic, memory is freed when the work submitted to the queue associate to the buffer is complete

* note that buffers always allow modifying their content
* QaBuffer<const T>would not be useful, because its contents could never be set
 aconst Buffer<T> does not prevent changes to the contents, as they can be modified through a copy

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

allocating memory -

* buffer allocations and deallocations can be immediate or queue-ordered

* immediate operations
- allocate and free the memory immediately
- may result in a device-wide synchronisation

- e.g.malloc/ free or cudaMalloc / cudaFree

// allocate an array of "size" floats in standard host memory
auto buffer = alpaka::allocBuf<float, uint32_ t>(host, size);

// allocate an array of "size" floats in pinned host memory
// mapped to be efficiently copieable to/from all the devices on the Platform
auto buffer = alpaka::allocMappedBuf<Platform, float, uint32_t>(host, size);

// alloca an array of "size" floats in global device memory
auto buffer = alpaka::allocBuf<float, uint32_t>(device, size);

* queue-ordered operations are usually asynchronous, and may cache allocations
- guarantee that the memory is allocated before any further operations submitted to the queue are executed
- guarantee that the memory will be freed once all pending operation in the queue are complete

- e.g.cudaMallocAsync / cudaFreeAsync

// allocate an array of "size" floats in global gpu memory, ordered along queue
auto buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, size);

- available only on device that support it (CPUs, NVIDIA CUDA = 11.2, AMD ROCm = 5.4)

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

using buffers

// require at least one device

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

std::size t n = alpaka::getDevCount<Platform>();
if (n == 0) {
exit(EXIT_FAILURE);

// use the single host device
Host host = alpaka::getDevByIdx<HostPlatform>(0u);

std::cout << "Host: << alpaka::getName(host) << '\n';
// allocate a buffer of floats in host memory, mapped to ... the device
uint32_t size = 42;
auto host_buffer =
alpaka::allocMappedBuf<Platform, float, uint32_t>(host, VeciD{size});
std::cout << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values
for (uint32_t 1 = 0; 1 < size; ++i) {
host_buffer[i] = 1;

// use the first device
Device device = alpaka::getDevByIdx<Platform>(0Ou);

std::cout << "Device: << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

March 8th, 2023

7

// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, VeclD{size});

std::cout << "memory buffer on " << alpaka::getName(alpaka::getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_ buffer, 0x00);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

// wait for all operations to complete
alpaka::wait(queue);

// read the content of the host buffer
for (uint32_t 1 = 0; 1 < size; ++i) {

std::cout << host_buffer[i] << 8

}

std::cout << '\n';

A. Bocci - Anintroduction to Alpaka

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc
https://creativecommons.org/licenses/by-sa/4.0/

using buffers

// require at least one device

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

std::size t n = alpaka::getDevCount<Platform>();
if (n == 0) {
exit(EXIT_FAILURE);

// use the single host device
Host host = alpaka::getDevByIdx<HostPlatform>(0u);

std::cout << "Host: << alpaka::getName(host) << '\n';
// allocate a buffer of floats in host memory, mapped to ... the device
uint32_t size = 42;
auto_host buffer =
[alpaka::allocMappedBuf<P1atform, float, uint32_t>(host, Vech{size})J
std::cout << "pinned host memory buffekat " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values T

for (uint32_t 1 = 0; 1 < size; ++1) { \\\>‘///

host_buffer[i] = 1;
} allocate buffers

// use the first device
Device device = alpaka::getDevByIdx<Platform>(0Ou);

std::cout << "Device: << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

March 8th, 2023

7 -

// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer =[alpaka::allocAsyncBuf<float, uint32_t>(queue, Vech{size});]
std::cout << "memory buffer on " << alpaka::getNai(a'Lpaka::getDev(device_buffer))

<< " at " << std::data(device_buffer) <§‘”\n\n";
//“J
/] set the device memory to all zeros (byte-wise/ not element-wise)
alpaka: :memset(queue, device_ buffer, 0x00);

o the host buffer
ice_buffer);

// copy the contents of the device buffer
alpaka: :memcpy(queue, host_buffer,

// thg}ggyigexbuﬁfer”§6€;'out of scope, but the memory is freed only

#ﬂr777ﬁbnce all enqueued operations have completed

}

// wait for all operations to complete
alpaka::wait(queue);

// read the content of the host buffer
for (uint32_t 1 = 0; 1 < size; ++1) {

std::cout << host_buffer[i] << 8

}

std::cout << '\n';

A. Bocci - Anintroduction to Alpaka

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc
https://creativecommons.org/licenses/by-sa/4.0/

using buffers

// require at least one device

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

std::size t n = alpaka::getDevCount<Platform>();
if (n == 0) {
exit(EXIT_FAILURE);

// use the single host device
Host host = alpaka::getDevByIdx<HostPlatform>(0u);

std::cout << "Host: << alpaka::getName(host) << '\n';
// allocate a buffer of floats in host memory, mapped to ... the device
uint32_t size = 42;
auto host_buffer =
alpaka::allocMappedBuf<Platform, float, uint32 t>(host, VeciD{size});
std::cout << "pinned host memory buffer at " <<[std::data(host_buffer)]<< "\n\n";

// fill the host buffers with values
for (uint32_t 1 = 0; 1 < size; ++1) { ;71//””””’
host_buffer[i] = 1; ‘/

: get the buffers’ memory addresses

// use the first device
Device device = alpaka::getDevByIdx<Platform>(0Ou);

std::cout << "Device: << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

March 8th, 2023

7 -

// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, VeclD{size});

std::cout << "memory buffer on
<< " at " <<[std::data(device_buffer)]<< "\n\n";

<< alpaka::getName(alpaka::getDev(device_buffer))

// set the device memory to all zeﬁos (byte-wise, not element-wise)
alpaka: :memset(queue, device_buffg?, 0x00);

// copy the contents of the device buffer to the host buffer

alpaka: :memcpy(queue, host_bGffer, device_buffer);

// the devigg/buffé?/goes out of scope, but the memory is freed only

/7#,,J/J€ﬁté/éTi enqueued operations have completed

}

// wait for all operations to complete
alpaka::wait(queue);

// read the content of the host buffer
for (uint32_t 1 = 0; 1 < size; ++1) {

std::cout << host_buffer[i] << 8

}

std::cout << '\n';

A. Bocci - Anintroduction to Alpaka

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc
https://creativecommons.org/licenses/by-sa/4.0/

using buffers

// require at least one device

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

std::size t n = alpaka::getDevCount<Platform>();
if (n == 0) {
exit(EXIT_FAILURE);

// use the single host device
Host host = alpaka::getDevByIdx<HostPlatform>(0u);

std::cout << "Host: << alpaka::getName(host) << '\n';

// allocate a buffer of floats in host memory, mapped to ... the device
uint32_t size = 42;
auto host_buffer =
alpaka::allocMappedBuf<Platform, float, uint32_t>(host, VeciD{size});
std::cout << "pinned host memory buffer at " << std::data(host_buffer) << "\n\n";

// fill the host buffers with values
for (uint32 t 1 = 0; 1 < size; ++i) {
[host_buffer[i] = g l(,

) S

write to and read from
the host buffer like a vector

// use the first device
Device device = alpaka::getDevByIdx<Platform>(0Ou);

std::cout << "Device: << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

March 8th, 2023

7 -

// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, VeclD{size});

std::cout << "memory buffer on " << alpaka::getName(alpaka::getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)
alpaka: :memset(queue, device_ buffer, 0x00);

// copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, device_buffer);

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

// wait for all operations to complete
lpaka::wait(queue);

for Cuint32_t 1 = 0; 1 < size; ++1) {

std: :cout B host_buffer[i] |<< ' ';
}

std::cout << '\n';

// \iitithe content of the host buffer

A. Bocci - Anintroduction to

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc
https://creativecommons.org/licenses/by-sa/4.0/

// require at least one device

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc

std::size t n = alpaka::getDevCount<Platform>();
if (n == 0) {
exit(EXIT_FAILURE);

// use the single host device
Host host = alpaka::getDevByIdx<HostPlatform>(0u);

std::cout << "Host: << alpaka::getName(host) << '\n';

// allocate a buffer of floats in host memory, mapped to ... the device
uint32_t size = 42; -
auto host_buffer =
alpaka::allocMappedBuf<Platform, float, uint32_t>(host, VeciD{size});
std::cout << "pinned host memory buffer at " << std::data(ho t_bqfferjfzth\n\n”;

// fill the host buffers with values [B S

for (uint32_t 1 = 0; 1 < size; ++i) {
host_buffer[i] = 1;

} memset and memcpy operations
are always asynchronous

// use the first device
Device device = alpaka::getDevByIdx<Platform>(0Ou);

std::cout << "Device: << alpaka::getName(device) << '\n';

// create a work queue
Queue queue{device};

7 -

// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, VeclD{size});

std::cout << "memory buffer on " << alpaka::getName(alpaka::getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)

fHalpaka::memset(queue, device_buffer, 0x00);]

// copy the contents of the device buffer to the host buffer

f)[alpaka: :memcpy(queue, host_buffer, device_buffer);]

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

S

\\\\

// wait f8r all operations to complete

[alpaka::wait(queue);]

March 8th, 2023

// read the content of the host buffer
for (uint32_t 1 = 0; 1 < size; ++1) {

std::cout << host_buffer[i] << 8

}

std::cout << '\n';

A. Bocci - Anintroduction to

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/03_memory.cc
https://creativecommons.org/licenses/by-sa/4.0/

memory views

* views wrap memory allocated by some other mechanism to provide a common interface
* e.g.alocalvariable on the stack, or memory owned by an std: :vector
* views do not own the underlying memory
* the lifetime of a view should not exceed that of the memory it points to

float* data = new float[size];
auto view = alpaka::ViewPlainPtr<float, uint32 t>(data, host, VeciD{size}); // define a view for a C++ array
alpaka: :memcpy(queue, view, device buffer); // copy the data to the array

* views to standard containers
* Alpaka provides adaptors and can automatically use std::array<T, N>and std::vector<T> as views

std::vector<float> data(size);
alpaka: :memcpy(queue, data, device_buffer); // copy the data to the vector

* using views to emulate buffers to constant objects
* buffers always allow modifying their content
* but we can wrap them in a constant view: alpaka: :ViewConst<Buffer<T>>

auto const_view = alpaka::ViewConst(device_buffer);
alpaka: :memcpy(queue, host_buffer, const_view); // copy the data to the host

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

using views

/] require at least one device https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04 views.cc
{

std::size t n = alpaka::getDevCount<Platform>();

if (n == 0) { // allocate a buffer of floats in global device memory, asynchronously
ex1t(EXIT_FAILURE); auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, VeclD{size});
} std::cout << "memory buffer on " << alpaka::getName(alpaka::getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";
// use the single host device

Host host = alpaka::getDevByIdx<HostPlatform>(0u); // set the device memory to all zeros (byte-wise, not element-wise)
std::cout << "Host: " << alpaka::getName(host) << '\n'; alpaka: :memset(queue, device_buffer, 0x00);

// allocate a buffer of floats in host memory, mapped to ... the device // create a read-only view to the device data

uint32_t size = 42; auto const_view = alpaka::ViewConst(device_buffer);

std::vector<float> host_data(size);
std::cout << "host vector at " << std::data(host_data) << "\n\n"; // copy the contents of the device buffer to the host buffer
alpaka: :memcpy(queue, host_buffer, const_view);

// fill the host buffers with values

for (uint32_t 1 = 0; 1 < size; ++i) { // the device buffer goes out of scope, but the memory is freed only
host_data[i] = i; // once all enqueued operations have completed

} }

// use the first device // wait for all operations to complete

Device device = alpaka::getDevByIdx<Platform>(0u); alpaka::wait(queue);

std::cout << "Device: << alpaka::getName(device) << '\n';
// read the content of the host buffer
// create a work queue for (uint32_t 1 = 0; 1 < size; ++1) {

[
B

Queue queue{device}; std::cout << host_data[i] <<

}

std::cout << '\n';

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc
https://creativecommons.org/licenses/by-sa/4.0/

using views

// require at least one device
std::size t n = alpaka::getDevCount<Platform>();
if (n == 0) {

exit(EXIT_FAILURE);

// use the single host device
Host host = alpaka::getDevByIdx<HostPlatform>(0u);

uint32 t size = 42;
[std :vector<float> host_data(size);](—_—

// fill the host buffers with values
for (uint32_t 1 = 0; 1 < size; ++i) {
host_data[i] =

// use the first device
Device device = alpaka::getDevByIdx<Platform>(0u);

std::cout << "Device: << alpaka::getName(device)

// create a work queue
Queue queue{device};

std::cout << "Host: " << alpaka::getName(host) << '\n'; alpaka: :memset(queue, device_buffer, 0x00);

// allocate a buffer of floats in host memory, mapped to ... the device // create a read-only view to the device data

std::cout << "host vector at " << std::data(host_ data) <z"\n\n"; // copy the contents of the device buffer to the host buffer

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04 views.cc
{

// allocate a buffer of floats in global device memory, asynchronously
auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, VeclD{size});

std::cout << "memory buffer on " << alpaka::getName(alpaka::getDev(device_buffer))
<< " at " << std::data(device_buffer) << "\n\n";

// set the device memory to all zeros (byte-wise, not element-wise)

auto const_view = alpaka::ViewConst(device_buffer);

|| alpakaiimemcpy(queUl®;| host_buffer| const_view);

\/// // the device buffer goes out of scope, but the memory is freed only
® // once all enqueued operations have completed
use a vector directly }

// wait for all operations to complete

alpaka::wait(queue);

<< '\n';

// read the content of the host buffer

for (uint32_t 1 = 0; 1 < size; ++1) {
std::cout << host_data[i] <<

[
B

March 8th, 2023

}

std::cout << '\n';

A. Bocci - Anintroduction to Alpaka

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc
https://creativecommons.org/licenses/by-sa/4.0/

/] require at least one device https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04 views.cc
{

std::size t n = alpaka::getDevCount<Platform>();

if (n == 0) { // allocate a buffer of floats in global device memory, asynchronously
ex1t(EXIT_FAILURE); auto device_buffer = alpaka::allocAsyncBuf<float, uint32_t>(queue, VeclD{size});
} std::cout << "memory buffer on " << alpaka::getName(alpaka::getDev(device_buffer))

<< " at " << std::data(device_buffer) << "\n\n";
// use the single host device

Host host = alpaka::getDevByIdx<HostPlatform>(0u); // set the device memory to all zeros (byte-wise, not element-wise)

std::cout << "Host: " << alpaka::getName(host) << '\n'; alpaka: :memset(queue, device_buffer, 0x00);

// allocate a buffer of floats in host memory, mapped to ... the device // create a read-only view to the device data

uint32_t size = 42; — *)[auto const_view = alpaka: :ViewConst(device_buffer);]

std::vector<float> host_data(size); ——

std::cout << "host vector at " << std::data(host_data) << ”\n\i;;//// // copy the contents of the device buffer to the host buffer
P— | —ﬁalﬁakafmeﬁepyﬁqwevﬁ;

// fill the host buffers with values "/
for (vinmz t 1= 05 T < sizes 0 L copy from a const view

host_data[i] = 1;

// the device buffer goes out of scope, but the memory is freed only
// once all enqueued operations have completed

) to garantee not }

changing the device buffer
// use the first device // wait for all operations to complete
Device device = alpaka::getDevByIdx<Platform>(0u); alpaka::wait(queue);

std::cout << "Device: << alpaka::getName(device) << '\n';
// read the content of the host buffer
// create a work queue for (uint32_t 1 = 0; 1 < size; ++1) {

[
B

Queue queue{device}; std::cout << host_data[i] <<

}

std::cout << '\n';

March 8th, 2023 A.Bocci - Anintroduction to

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/04_views.cc
https://creativecommons.org/licenses/by-sa/4.0/

alfsalka device API

alpalca device function

device functions
» device functions are marked with the ALPAKA_FN_ACC macro

ALPAKA_FN_ACC
float my_func(float arg) { .. }

* backend-specific functions

if the implementation of a device function may depend on the backend or on the work division into groups and threads,
it should be templated on the Accelerator type, and take an Accelerator object

template <typename TAcc>
ALPAKA_FN_ACC
float my_func(TAcc const& acc, float arg) { .. }

* the availability of C++ features depends on the backend and on the device compiler

March 8th, 2023

dynamic memory allocation is (partially) supported, but strongly discouraged

c++ std containers should be avoid

exceptions are usually not supported

recursive functions are supported only by some backends (CUDA: yes, but often inefficient; SYCL: no)
c++20 is available in CUDA code only starting from CUDA 12.0

etc.

A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

examples:

* mathematical operations are similar to what is available in the c++ standard:
=2 o
alpaka::math::sin(acc, arg)
* atomic operations are similar to what is available in CUDA and HIP
—hvelg
alpaka::atomicAdd(acc, T* address, T value, alpaka::hierarchy::Blocks)
« warp-level functions are similar to what is available in CUDA and HIP

- eg.
alpaka::warp::ballot(acc, arg)

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

alralka kernels

kernels

 areimplemented as an ALPAKA_FN_ACC void operator()(..) const function of a dedicated struct or
class

- kernels never return anything: -> void
- kernels cannot change any data member on the host: must be declared const

« are always templated on the accelerator type, and take an accelerator object as the First argument

struct Kernel {
template <typename TAcc>
ALPAKA_FN_ACC void operator()(
TAcc const& acc,
float const* in1, float const* in2, float* out, size t size) const

{

,
i

* the TAcc acc argument identifies the backend and provides the details of the work division

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* alpaka maintains the work division into blocks and threads used in CUDA and OpenCL:

* akernel launchis divided into a grid of blocks
- thevarious block are scheduled independently, so they may be running concurrently or at different times

- operations in different blocks cannot be synchronised
- operations in different blocks can communicate only through the device global memory
* each block is composed of threads running in parallel
- threadsin a block tend to run concurrently, but may diverge or be scheduled independently from each other
- operations in a block can be synchronised, e.g. with alpaka: :syncBlockThreads(acc);
- operations in a block can communicate through shared memory
* blocks can be decomposed into sub-groups, i.e. warps

- threads in the same warp can synchronise and exchange data using more efficient primitives

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* to support efficient algorithms running on a CPU, alpaka introduces an additional level in
the execution hierarchy: elements

 each thread in a block may run on multiple consecutive elements

* CPU backends usually run with multiple elements per thread

- agood choice might be 16 elements, so 16 consecutive integers or floats can be loaded into a cache line

- in principle, this could allow a host compiler to auto-vectorise the code, but more testing and development is needed !
* GPU backends usually run with a single element per thread

- memory accesses are already coalesced at the warp level

- in principle, 2 elements per thread could be used with short or float16 data

e kernel should be written to allow for different number of elements per thread

 acommon approach is to use
- Nblocks, M threads per block, 1 element per thread on a GPU
- Nblocks, 1 thread per block, M elements per thread on a CPU

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

a simple strided loop

* we provide a helper to implement a simple N-dimensional strided loop
* thelaunch grid is tiled and repeated as many times as needed to cover the problem size
* this tends to be the most efficient approach when all threads can work independently

#include "workdivision.h"

struct Kernel {
template <typename TAcc>
ALPAKA_FN_ACC void operator()(
TAcc const& acc,
float const* in1, float const* in2, float* out, size t size) const
{
for (auto index : elements_with_stride(acc, size)) {
out[index] = in1[index] + in2[index];
}
}
%

* for more complicated cases, use the alpaka::getWorkDiv and alpaka: :getIdx functions

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

launching kernels

Accelerator

* describes "how" a kernel runs on a device
- N-dimensional work division (1D, 2D, 3D, ...)
- onthe CPU, serial vs parallel execution at the thread and block level (single thread, multi-threads, TBB tasks, ...)
- implementation of shared memory, atomic operations, etc.
* accelerators are created only when a kernel is executed, and can only be accessed in device code
- each device function can (should) be templated on the accelerator type, and take an accelerator as its first argument
- the accelerator object can be used to extract the execution configuration (blocks, threads, elements)

- the accelerator type can be used to implement per-accelerator behaviour

* for example, an algorithm can be implemented in device code using a parallel approach for a GPU-
based accelerator, and a serial approach for a CPU-based accelerator

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

* akernel launch requires
* the type of the accelerator where the kernel will run

* the queue to submit the work to

* the work division into blocks, threads, and elements
* aninstance of the type that implements the kernel
* the arguments to the kernel function

* we provide some helper types and functions
* config.hincludes the aliases Acci1D, Acc2D, Acc3D for 1D, 2D and 3D kernels
* workdivision.h provides the helper function make_workdiv<TAcc>(blocks, threads_or_elements)

// launch a 1-dimensional kernel with 32 groups of 32 threads (GPU) or elements (CPU)
auto grid = make_workdiv<Acc1D>(32, 32);
alpaka: :exec<Acc1D>(queue, grid, Kernel{}, a.data(), b.data(), sum.data(), size);

March 8th, 2023 A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

a complete alpaka example

* running on the CPU

$./05 _kernel_cpu

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05_kernel.cc

Host: AMD EPYC 7352 24-Core Processor
Device: AMD EPYC 7352 24-Core Processor
Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (1) threads x (32) elements...

success

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (1) threads x (32) elements...

success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (1, 1, 1) threads x (4, 4, 4) elements...

success

* running on the GPU

$./05 kernel _cuda

Host: AMD EPYC 7352 24-Core Processor

Device: Tesla T4

Testing VectorAddKernel with scalar indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernellD with vector indices with a grid of (32) blocks x (32) threads x (1) elements...

success

Testing VectorAddKernel3D with vector indices with a grid of (5, 5, 1) blocks x (4, 4, 4) threads x (1, 1, 1) elements...

success

March 8th, 2023

A. Bocci - Anintroduction to Alpaka 27 /30

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/05_kernel.cc
https://creativecommons.org/licenses/by-sa/4.0/

summary

yesterday we learned
* what performance portability means and discovered the Alpaka library

* how to set up Alpaka for a simple project
* how to compile a single source file for different back-ends
* what are Alpaka platforms, devices, queues and events

today we learned
* how to work with host and device memory
* how to write device functions and kernels
* how to use an Alpaka accelerator and work division to launch a kernel
* andsee a complete example!

congratulations!
* now you can write portable and performant applications

A. Bocci - Anintroduction to Alpaka

https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

CERN

Copyright CERN 2023
Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

