
An introduction to
performance portability with alpaka – 7-8 March 2023

Andrea Bocci
CERN - EP/CMD

March 7th, 2023 A. Bocci - An introduction to Alpaka 2 / 54

who am I

● Dr. Andrea Bocci <andrea.bocci@cern.ch>, @fwyzard on Mattermost
● applied physicist working on the CMS experiment for over 20 years

● at CERN since 2010

● I’ve held various roles related to the High Level Trigger
– started out as the b-tagging HLT contact

– joined as (what today is called) HLT STORM convener

– deputy Trigger Coordinator and Trigger Coordinator

– HLT Upgrade convener, and editor for the DAQ and HLT Phase-2 TDR

– currently, “GPU Trigger Officer”

● for the last 5 years, I’ve been working on GPUs and performance portability
– together with Matti and a few CERN colleagues

– “Patatrack” pixel track and vertex reconstruction running on GPUs

– R&D projects on CUDA, Alpaka, SYCL and Intel oneAPI

– support for CUDA, HIP/ROCm, and Alpaka in CMSSW

– Patatrack Hackathons !

mailto:andrea.bocci@cern.ch
https://mattermost.web.cern.ch/cms-exp/messages/@fwyzard
https://creativecommons.org/licenses/by-sa/4.0/

performance portability

March 7th, 2023 A. Bocci - An introduction to Alpaka 4 / 54

what is portability ?

● what do we mean by software portability ?
● the possibility of running a software application or library on different platforms

– different hardware architectures, different operating systems

– e.g. Windows running on x86, OSX running on ARM, Linux running on IBM Power, etc.

● how do we achieve software portability ?
● write software using a standardised language

– C++, python, Java, etc.

● use standard features
– IEEE floating point numbers

● use standard or portable libraries
– C++ standard library, Boost, Eigen, etc.

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 5 / 54

portability: an example

● for example

should behave in the same way on all platforms that support a standard C++ compiler:

#include <cmath>

#include <cstdio>

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

int main() {

 print_sqrt(2.);

}

The square root of 2 is 1.41421

https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/00_hello_world.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/00_hello_world.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 6 / 54

what about GPUs ?

● writing a program that offloads some of the computations to a GPU is somewhat
different from writing a program that runs just on the CPU

● inside a single application …
● … different hardware architectures
● … different memory spaces
● … different way to call a function or launch a task
● … different optimal algorithms
● … different compilers
● … different programming languages !

● sometimes it may help to think about a GPU like programming a remote machine
● compile for completely different targets
● launching a kernel is similar to running a complete program !

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 7 / 54

portability: the same example

#include <cmath>

#include <cstdio>

#include <cuda_runtime.h>

__device__

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

__global__

void kernel() {

 print_sqrt(2.);

}

int main() {

 kernel<<<1, 1>>>();

 cudaDeviceSynchronize();

}

The square root of 2 is 1.41421

https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/01_hello_world.cu

https://github.com/fwyzard/intro_to_alpaka/blob/master/portability/01_hello_world.cu
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 8 / 54

portability: side by side

#include <cmath>

#include <cstdio>

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

int main() {

 print_sqrt(2.);

}

The square root of 2 is 1.41421

#include <cmath>

#include <cstdio>

#include <cuda_runtime.h>

__device__

void print_sqrt(double x) {

 printf("The square root of %g is %g\n", x, std::sqrt(x));

}

__global__

void kernel() {

 print_sqrt(2.);

}

int main() {

 kernel<<<1, 1>>>();

 cudaDeviceSynchronize();

}

The square root of 2 is 1.41421

● we could
● wrap the differences in a few macros or classes
● share the common parts

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 9 / 54

so… are we done ?

● not really
● trivially extending our example to an expensive computation would give horrible performance !

● why ?
● a CPU will run a single-threaded program very efficiently
● a GPU would perform horribly

– use a single thread out of a whole warp (32 threads): use at most 3% of its computing power

– use a single block: loose any possibility of hiding memory latency

– cannot take advantage of advanced capabilities like atomic operations, shared memory, etc.

● and what about different GPU back-ends ?

● what we need is performance portability
● write code in a way that can run on multiple platforms
● leverage their potential
● and achieve (almost) native performance on all of them

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 10 / 54

performance portability ?

 okkos

https://creativecommons.org/licenses/by-sa/4.0/

the alpaka performance portability library

March 7th, 2023 A. Bocci - An introduction to Alpaka 12 / 54

what is alpaka ?

● alpaka is a header-only C++17 abstraction library for accelerator development
● it aims to provide performance portability

across accelerators through the abstraction
of the underlying levels of parallelism

● it currently supports
● CPUs, with serial and parallel execution
● GPUs by NVIDIA, with CUDA
● GPUs by AMD, with HIP/ROCm
● support for Intel GPUs and FPGAs is

under development, based on SYCL and Intel oneAPI

● it is easy to integrate in an existing project
● write code once, use a Makefile of CMake to build it for multiple backends
● a single application can supports all the different backends at the same time

● the latest documentation is available at https://alpaka.readthedocs.io/en/latest/index.html

https://alpaka.readthedocs.io/en/latest/index.html
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 13 / 54

setting up alpaka

● download the latest version of alpaka from GitHub
● use the version that was current on March 1st 2023, to make sure the examples will work as expected
● for a new project you should usually take the most recent version
● these examples are likely to work anyway

alpaka requires c++17 – we need a more recent version of gcc
source scl_source enable devtoolset-11

alpaka requires Boost 1.74 or newer – you can find a prebuilt version at
export BOOST_BASE=~abocci/public/boost

define a directory for the alpaka library
export ALPAKA_BASE=~/private/alpaka

clone the latest version of alpaka into a predefined directory
git clone https://github.com/alpaka-group/alpaka $ALPAKA_BASE

make sure to use a well-defined version of the library
cd $ALPAKA_BASE
git reset --hard 8ea325d3
cd -

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 14 / 54

setting up alpaka

● download the latest version of alpaka from GitHub
● use the version that was current on March 1st 2023, to make sure the examples will work as expected
● for a new project you should usually take the most recent version
● these examples are likely to work anyway

alpaka requires c++17 – we need a more recent version of gcc
source scl_source enable devtoolset-11

alpaka requires Boost 1.74 or newer – you can find a prebuilt version at
export BOOST_BASE=~abocci/public/boost

define a directory for the alpaka library
export ALPAKA_BASE=~/private/alpaka

clone the latest version of alpaka into a predefined directory
git clone https://github.com/alpaka-group/alpaka $ALPAKA_BASE

make sure to use a well-defined version of the library
cd $ALPAKA_BASE
git reset --hard 8ea325d3
cd -

this part sets up the
environment

make sure to do it in
every session

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 15 / 54

how does it work ?

● Alpaka internally uses preprocessor symbols to enable the different backends:
● ALPAKA_ACC_GPU_CUDA_ENABLED for running on NVIDIA GPUs
● ALPAKA_ACC_GPU_HIP_ENABLED for running on AMD GPUs
● ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED for running serially on a CPU
● …

● in this tutorial we will build separate applications from each example
● each application is compiled with the corresponding compiler (g++, nvcc, hipcc, …)
● each application uses a single back-end

● it is also possible to enable more than one back-end at a time
● however, the underlying CUDA and HIP header files will clash, so one needs to play some tricks with

forward declarations, or use separate the compilation for the different backends
● and separate the host and device parts

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 16 / 54

alpaka core concepts

Host-side API
● initialisation and device selection: Platforms and Devices
● asynchronous operations and synchronisation: Queues and Events
● owning memory Buffers and non-owning memory Views
● submitting work to devices: work division and Accelerators

Device-side API
● plain C++ for device functions and kernels
● shared memory, atomic operations, and memory fences
● primitives for mathematical operations
● warp-level primitives for synchronisation and data exchange (not covered)
● random number generator (not covered)

nota bene:
● most Alpaka API objects behave like shared_ptrs, and should be passed by value or by reference to const (i.e. const&)

https://creativecommons.org/licenses/by-sa/4.0/

platforms and devices

March 7th, 2023 A. Bocci - An introduction to Alpaka 18 / 54

alpaka : initialisation and device selection

Platform and Device
● identify the type of hardware (e.g. host CPUs or NVIDIA GPUs) and individual devices (e.g. each single

GPU) present on the machine
● the CPU device DevCpu serves two purposes:

– as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, launch kernels, etc.)

– as an “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

● platforms cannot be instantiated, they are only used as a type
● devices should be created at the start of the program and used consistently
● some common cases

back end alpaka platform alpaka device

CPUs, serial or parallel PltfCpu DevCpu

NVIDIA GPU, with CUDA PltfCudaRt DevCudaRt

AMD GPUs, with HIP/ROCm PltfHipRt DevHipRt

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 19 / 54

platforms and devices

● Alpaka provides a simple API to enumerate the devices on a given platform:

● alpaka::getDevCount<Platform>()
– returns the number of devices on the given platform

● alpaka::getDevByIdx<Platform>(index)
– initialises the index device on the platform, and returns the corresponding Device object

● alpaka::getName(device)
– returns the name of the given device

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 20 / 54

your first alpaka application

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // enumerate the devices on the accelerator platform

 std::vector<Device> devices;

 std::size_t n = alpaka::getDevCount<Platform>();

 devices.reserve(n);

 for (std::size_t i = 0; i < n; ++i) {

 devices.push_back(alpaka::getDevByIdx<Platform>(i));

 }

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';

 std::cout << "Found " << devices.size() << " device(s):\n";

 for (auto const& device: devices)

 std::cout << " - " << alpaka::getName(device) << '\n';

 std::cout << std::endl;

}

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 21 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // enumerate the devices on the accelerator platform

 std::vector<Device> devices;

 std::size_t n = alpaka::getDevCount<Platform>();

 devices.reserve(n);

 for (std::size_t i = 0; i < n; ++i) {

 devices.push_back(alpaka::getDevByIdx<Platform>(i));

 }

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';

 std::cout << "Found " << devices.size() << " device(s):\n";

 for (auto const& device: devices)

 std::cout << " - " << alpaka::getName(device) << '\n';

 std::cout << std::endl;

}

your first alpaka application

these are the host and accelerator platforms

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 22 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // enumerate the devices on the accelerator platform

 std::vector<Device> devices;

 std::size_t n = alpaka::getDevCount<Platform>();

 devices.reserve(n);

 for (std::size_t i = 0; i < n; ++i) {

 devices.push_back(alpaka::getDevByIdx<Platform>(i));

 }

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';

 std::cout << "Found " << devices.size() << " device(s):\n";

 for (auto const& device: devices)

 std::cout << " - " << alpaka::getName(device) << '\n';

 std::cout << std::endl;

}

your first alpaka application

alpaka::core::demangled<T> is a string with

the "human readable" name of c++ type name

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 23 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // enumerate the devices on the accelerator platform

 std::vector<Device> devices;

 std::size_t n = alpaka::getDevCount<Platform>();

 devices.reserve(n);

 for (std::size_t i = 0; i < n; ++i) {

 devices.push_back(alpaka::getDevByIdx<Platform>(i));

 }

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';

 std::cout << "Found " << devices.size() << " device(s):\n";

 for (auto const& device: devices)

 std::cout << " - " << alpaka::getName(device) << '\n';

 std::cout << std::endl;

}

your first alpaka application

query the number of devices on the platform

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 24 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // enumerate the devices on the accelerator platform

 std::vector<Device> devices;

 std::size_t n = alpaka::getDevCount<Platform>();

 devices.reserve(n);

 for (std::size_t i = 0; i < n; ++i) {

 devices.push_back(alpaka::getDevByIdx<Platform>(i));

 }

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';

 std::cout << "Found " << devices.size() << " device(s):\n";

 for (auto const& device: devices)

 std::cout << " - " << alpaka::getName(device) << '\n';

 std::cout << std::endl;

}

your first alpaka application

get the nth device for the given platform

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 25 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // enumerate the devices on the accelerator platform

 std::vector<Device> devices;

 std::size_t n = alpaka::getDevCount<Platform>();

 devices.reserve(n);

 for (std::size_t i = 0; i < n; ++i) {

 devices.push_back(alpaka::getDevByIdx<Platform>(i));

 }

 std::cout << "Accelerator platform: " << alpaka::core::demangled<Platform> << '\n';

 std::cout << "Found " << devices.size() << " device(s):\n";

 for (auto const& device: devices)

 std::cout << " - " << alpaka::getName(device) << '\n';

 std::cout << std::endl;

}

your first alpaka application

get the name of the device

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/00_enumerate.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 26 / 54

some important details

● grab all the examples from GitHub

/*

 * g++ -std=c++17 -O2 -g -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED -I$BOOST_BASE/include -I$ALPAKA_BASE/include 00_enumerate.cc -o
00_enumerate_cpu

 * nvcc -x cu -std=c++17 -O2 -g --expt-relaxed-constexpr -DALPAKA_ACC_GPU_CUDA_ENABLED -I$BOOST_BASE/include -I$ALPAKA_BASE/include
00_enumerate.cc -o 00_enumerate_cuda

 */

#include <iostream>

#include <vector>

#include <alpaka/alpaka.hpp>

#include "config.h"

...

git clone https://github.com/fwyzard/intro_to_alpaka.git

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 27 / 54

let’s build it …

● using the CPU as the “accelerator”
● the CPU acts as both the “host” and the “device”
● the application runs entirely on the CPU

● using the CUDA GPUs as the “accelerator”
● the CPU acts as the “host”, the GPUs act as the “devices”
● the application launches kernels that run on the GPUs

g++ -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED \
 -std=c++17 -O2 -g -I$BOOST_BASE/include -I$ALPAKA_BASE/include \
 00_enumerate.cc \
 -o 00_enumerate_cpu

nvcc -x cu –expt-relaxed-constexpr -DALPAKA_ACC_GPU_CUDA_ENABLED \
 -std=c++17 -O2 -g -I$BOOST_BASE/include -I$ALPAKA_BASE/include \
 00_enumerate.cc \
 -o 00_enumerate_cuda

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 28 / 54

… and run it

$./00_enumerate_cpu

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Accelerator platform: alpaka::PltfCpu

Found 1 device(s):

 - AMD EPYC 7352 24-Core Processor

$./00_enumerate_cuda

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Accelerator platform: alpaka::PltfUniformCuda…

Found 2 device(s):

 - Tesla T4

 - Tesla T4

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 29 / 54

where is the magic ?

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Pltf<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Device = alpaka::DevHipRt;

using Platform = alpaka::Pltf<Device>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Pltf<Device>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

back end alpaka platform alpaka device

CPUs, serial or parallel PltfCpu DevCpu

NVIDIA GPU, with CUDA PltfCudaRt DevCudaRt

AMD GPUs, with HIP/ROCm PltfHipRt DevHipRt

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 30 / 54

where is the magic ?

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Pltf<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Device = alpaka::DevHipRt;

using Platform = alpaka::Pltf<Device>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Pltf<Device>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

depending on which back-end is enabled ...

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 31 / 54

where is the magic ?

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Device = alpaka::DevCudaRt;

using Platform = alpaka::Pltf<Device>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Device = alpaka::DevHipRt;

using Platform = alpaka::Pltf<Device>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Device = alpaka::DevCpu;

using Platform = alpaka::Pltf<Device>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

depending on which back-end is enabled,
Device and Platform are aliased to different types

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h
https://creativecommons.org/licenses/by-sa/4.0/

queues and events

March 7th, 2023 A. Bocci - An introduction to Alpaka 33 / 54

alpaka: asynchronous operations

Queues:
● identify a “work queue” where tasks (memory operations, kernel executions, …) are executed in order

– for example, a queue could represent an underlying CUDA stream or a CPU thread

– from the point of view of the host , queues can be synchronous or asynchronous

● with a synchronous (or blocking) queue:
– any operation is executed immediately, before returning to the caller

– the host automatically waits (blocks) until each operation is complete

● with an asynchronous (or non-blocking) queue:
– any operation is executed in the background, and each call returns immediately, without waiting for its completion

– the host needs to synchronize explicitly with the queue, before accessing the results of the operations

● in general, prefer using a synchronous queue on a CPU, and an asynchronous queue on a GPU
● queues are always associated to a specific device
● most Alpaka operations (memory ops, kernel launches, etc.) are associated to a queue
● Alpaka does not provide a “default queue”, create one explicitly

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 34 / 54

common operations on queues

● creating a queue of the predefined type associated to a device is as simple as
auto queue = Queue(device);

● waiting for all the asynchronous operations in a queue to complete is as simple as
alpaka::wait(queue);

● enqueue a host function
alpaka::enqueue(queue, host_function);

● enqueue a device function (launch a kernel)
…

● allocate, set, or copy memory host and device memory
…

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 35 / 54

alpaka: events and synchronisation

Events:
● events identify points in time along a work queue
● can be used to query or wait for the readiness of a task submitted to a queue
● can be used to synchronise different queues
● like queues, events are always associated to a specific device

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 36 / 54

common operations on events
● events associated to a given device can be created with:

auto event = Event(device);

● events are enqueued to mark a given point along the queue:
alpaka::enqueue(queue, event);

– an event is “complete” once all the work submitted to the queue before the event has been completed

● an event can be used to block the execution on the host until it is complete:
alpaka::wait(event);

– blocks the execution on the host

● or to make an other queue wait until a given event (in a different queue) is complete:
alpaka::wait(other_queue, event);

– does not block execution on the host

– further work submitted to other_queue will only start after event is complete

● an event’s status can also be queried without blocking the execution:
alpaka::isComplete(event);

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 37 / 54

more magic

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;

using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;

using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Queue = alpaka::Queue<Device, alpaka::Blocking>;

using Event = alpaka::Event<Queue>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 38 / 54

#if defined(ALPAKA_ACC_GPU_CUDA_ENABLED)

// CUDA backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;

using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_GPU_HIP_ENABLED)

// HIP/ROCm backend

using Queue = alpaka::Queue<Device, alpaka::NonBlocking>;

using Event = alpaka::Event<Queue>;

#elif defined(ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED)

// CPU serial backend

using Queue = alpaka::Queue<Device, alpaka::Blocking>;

using Event = alpaka::Event<Queue>;

#else

// no backend specified

#error Please define one of ALPAKA_ACC_GPU_CUDA_ENABLED, ALPAKA_ACC_GPU_HIP_ENABLED, ALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED

#endif

more magic

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h

prefer asynchronous queues for a GPU

prefer synchronous queues for a CPU

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/config.h
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 39 / 54

fun with queues

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 40 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

fun with queues

this part we know

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 41 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

fun with queues

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

create a blocking queue on the Host

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 42 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

fun with queues

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

this syntax introduces a lambda expression …

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 43 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

fun with queues

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

this syntax introduces a lambda expression

that performs these operations

togethwer with alpaka::enqueue(...), this part

 - creates an object that encapsulates some operations

 - submits those opertations to run in a queue

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 44 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::Blocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

fun with queues

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc

wait for the enqueued operations to complete

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/01_blocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 45 / 54

let’s build it and run it

● in this example we are not making use of any accelerator
● let’s build it only for the CPU back-end

● and run it

g++ -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED \
 -std=c++17 -O2 -g -I$BOOST_BASE/include -I$ALPAKA_BASE/include \
 01_blocking_queue.cc \
 -o 01_blocking_queue_cpu

$./01_blocking_queue_cpu

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Enqueue some work

 - host task running...

 - host task complete

Wait for the enqueue work to complete...

All work has completed

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 46 / 54

an async example

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a non-blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::NonBlocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 47 / 54

int main() {

 // the host abstraction always has a single device

 Host host = alpaka::getDevByIdx<HostPlatform>(0u);

 std::cout << "Host platform: " << alpaka::core::demangled<HostPlatform> << '\n';

 std::cout << "Found 1 device:\n";

 std::cout << " - " << alpaka::getName(host) << '\n';

 std::cout << std::endl;

 // create a non-blocking host queue and submit some work to it

 alpaka::Queue<Host, alpaka::NonBlocking> queue{host};

 std::cout << "Enqueue some work\n";

 alpaka::enqueue(queue, []() noexcept {

 std::cout << " - host task running...\n";

 std::this_thread::sleep_for(std::chrono::seconds(5u));

 std::cout << " - host task complete\n";

 });

 // wait for the work to complete

 std::cout << "Wait for the enqueue work to complete...\n";

 alpaka::wait(queue);

 std::cout << "All work has completed\n";

}

an async example

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc

create a non-blocking queue on the Host

https://github.com/fwyzard/intro_to_alpaka/blob/master/alpaka/02_nonblocking_queue.cc
https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 48 / 54

g++ -DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED \
 -std=c++17 -O2 -g -I$BOOST_BASE/include -I$ALPAKA_BASE/include -pthread \
 02_nonblocking_queue.cc \
 -o 02_nonblocking_queue_cpu

let’s build it and run it

● in this example, too, we are not making use of any accelerator
● let’s build it only for the CPU back-end – with POSIX threads

● and run it
$./02_nonblocking_queue_cpu

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Enqueue some work

Wait for the enqueue work to complete...

 - host task running...

 - host task complete

All work has completed

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 49 / 54

blocking vs non-blocking

$./01_blocking_queue_cpu

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Enqueue some work

 - host task running...

 - host task complete

Wait for the enqueue work to complete...

All work has completed

$./02_nonblocking_queue_cpu

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Enqueue some work

Wait for the enqueue work to complete...

 - host task running...

 - host task complete

All work has completed

https://creativecommons.org/licenses/by-sa/4.0/

March 7th, 2023 A. Bocci - An introduction to Alpaka 50 / 54

blocking vs non-blocking

$./01_blocking_queue_cpu

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Enqueue some work

 - host task running...

 - host task complete

Wait for the enqueue work to complete...

All work has completed

$./02_nonblocking_queue_cpu

Host platform: alpaka::PltfCpu

Found 1 device:

 - AMD EPYC 7352 24-Core Processor

Enqueue some work

Wait for the enqueue work to complete...

 - host task running...

 - host task complete

All work has completed

● with a synchronous (or blocking) queue:
– any operation is executed immediately, before returning to the caller

– the host automatically waits (blocks) until each operation is complete

● with an asynchronous (or non-blocking) queue:
– any operation is executed in the background, and each call returns immediately, without waiting for its completion

– the host needs to synchronize explicitly with the queue, before accessing the results of the operations

https://creativecommons.org/licenses/by-sa/4.0/

what’s next ?

March 7th, 2023 A. Bocci - An introduction to Alpaka 52 / 54

summary

● today we have learned
● what performance portability means and discovered the

Alpaka library
● how to set up Alpaka for a simple project
● how to compile a single source file for different back-ends
● what are Alpaka platforms, devices, queues and events

● tomorrow we will see
● how to work with host and device memory
● how to write device functions and kernels
● how to use an Alpaka accelerator and work division to

launch a kernel
● a complete example !

https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

Copyright CERN 2023

Creative Commons 4.0 Attribution-ShareAlike International - CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/

