
1

CUDA Streams
Matt Stack, Solutions Architect | 2/21/23

2

Concurrency- Motivation

• Normal CUDA implementation- 3 step process

• Motivation: could we achieve a workflow like this?

Copy data to GPU

Copy result back to host

Run kernel(s) on GPU

Copy data to GPU

Copy result back to host

Run kernel(s) on GPU

3

Pinned Memory

• Overview:

• Faster Host to/from Device copies

• Enables async memcpys to/from Host and Device

• API:

• cudaMallocHost() and cudaHostAlloc()

• cudaFreeHost()

RAM

OS

4

Stream API Overview

• Default CUDA review:
• Kernel are launched asynchronously with respect to Host
• cudaMemcpy(HtoD/DtoH) blocks the Host thread, “blocking call”
• Default stream

• Stream API:
• cudaStreamCreate() / cudaStreamDestroy()
• cudaMemcpyAsync()

• (requires the Host addr to be pinned)
• my_kernel<<<grid, block, 0, stream[i]>>>(…)

• Stream:
• A Stream is a sequence of operations that are issued in-order

5

Stream Semantics

• Two operations* issued to the same stream will execute
in issue-order. Operation B issued after Operation A will
not begin until Operation A has completed

• Two operations* issued to different streams have no
order prescribed by CUDA. Operation A issued in stream
1 may execute before, during, or after an Operation B
issued in stream 2

*define Operation: usually cudaMemcpyAsync or a kernel<<< >>> launch, but
there are other CUDA API calls that take a stream parameter

6

Example

cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<< grid, block, 0, stream2 >>>(...);

cudaStreamSynchronize(stream2);

Potential overlap

Copy data to GPU

Copy result back to host

Run kernel(s) on GPU!

!
Caution:
What happens in this example if the
kernel depends on data from
cudaMemAsync()?

7

Example

Non-streams

cudaMemcpy(d_x, h_x, size_x,
cudaMemcpyHostToDevice);
kernel<<<blockspg, threadspb>>>(d_x, d_y, N);
cudaMemcpy(h_y, d_y, size_y,
cudaMemcpyDeviceToHost)H -> D copy

D -> H copy

kernel

H -> D copy

D -> H copy

kernel

H -> D copy

D -> H copy

kernel

H -> D copy

D -> H copy

kernel

With streams

for (int i = 0; i < c; ++i){
size_t offx = (size_x / c) * i;
size_t offy = (size_y / c) * i;
cudaMemcpyAsync(d_x+offx, h_x+offx, (size_x / c),
cudaMemcpyHostToDevice, stream[i%ns]);
Kernel<<< b/c, t, 0, stream[i%ns] >>>(d_x+offx,
d_y+offy, N/c);
cudaMemcpyAsync(h_y+offy, d_y+offy, (size_x / c),
cudaMemcpyDeviceToHost, stream[i%ns]);

}

0 1 0

. . .

8

Default Stream

• Kernels<<<>>> and cudaMemcpy that don't specify a stream are sent to the
Default Stream (Null stream)

• Operations submitted to the Default Stream will:
• wait for all previously submitted work in all streams to finish before executing
• not allow other operations in different streams to begin executing until it is

finished

H -> D copyD -> H copy kernel

• Converting the Default Stream to an “ordinary” stream
nvcc --default-stream per-thread …

H -> D copyD -> H copy kernel

H -> D copyD -> H copy kernel

H -> D copyD -> H copy kernel

kernel

Stream 1

Stream 2

Default Stream

9

CUDA Events

• CUDA Events are markers used for synchronization and signaling between
streams and the Host

• Used for timing and complex synchronization between streams
• CudaEvents are “recorded” when they are issued
• CudaEvents are “completed” when the stream has reached the point where
it was recorded

• for stream signaling- cudaStreamWaitEvent(), makes a stream wait for an
event to happen

cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);
cudaEventRecord(start); // “record” issued into default stream
Kernel<<<b, t >>>(…);
cudaEventRecord(stop);
cudaEventSynchronize(stop); // wait for stream activity to reach stop event
cudaEventElapsedTime(&float_time, start, stop);

10

Further Reading

• Going into more technical detail with queues and depthvsbreadth first:
• https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

• APIs for Streams and Events
• https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
• https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT

• CUDA Programming Guide is always a good place to get a overview of a feature:
• https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams

• Cuda Streams performance best practices:
• https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

• CUDA Streams lecture
• https://www.olcf.ornl.gov/calendar/cuda-concurrency/ (CUDA Concurrency on Vimeo)

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
https://www.olcf.ornl.gov/calendar/cuda-concurrency/
https://vimeo.com/442361242

11

Hands on

https://github.com/matt-stack/TAC-HEP-Training-Feb2023.git

Ex1. Compute/Copy overlap Ex2. Cuda Event Timing Ex3. Default streams with Nsys

https://github.com/matt-stack/TAC-HEP-Training-Feb2023.git

12

