<A NVIDIA.

CUDA Streams

Matt Stack, Solutions Architect | 2/21/23

Concurrency- Motivation

* Normal CUDA implementation- 3 step process

-y, —— P

* Motivation: could we achieve a workflow like this?

2 <ANVIDIA I

* Qverview:

- Faster Host to/from Device copies

Pinned Memory

* Enables async memcpys to/from Host and Device

* API:

» cudaMallocHost() and cudaHostAlloc()

» cudaFreeHost()

OS

RAM

Pageable Data Transfer

Pinned Data Transfer

3

<A NVIDIA.

Stream API Overview

Default CUDA review:
Kernel are launched asynchronously with respect to Host
(HtoD/DtoH) blocks the Host thread, "blocking call”
Default stream

Stream API:
/
(requires the Host addr to be pinned)
my kernel<<<grid, block, O, (...)
Stream:

A Stream Is a sequence of operations that are issued in-order

Stream Semantics

Two operations™ issued to the same stream will execute
In iIssue-order. Operation B issued after Operation A will
not begin until Operation A has completed

Two operations™ issued to different streams have no
order prescribed by CUDA. Operation A issued In stream
1 may execute before, during, or after an Operation B
Issued In stream 2

*define Operation: usually or a kernel lJaunch, but
there are other CUDA AP calls that take a stream parameter

Example

cudaStream t . stream?2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream?2); p <
Potential overlap

cudaMemcpyAsync(dst, src, size, dir, stream1); % J

kernel<<< grid, block, 0, stream2 >>>(...);

cudaStreamSynchronize(stream?2);

Caution:

What happens in this example if the
kernel depends on data from

Run kernel(s) on GPU CudaMemAsync()?

Copy data to GPU

6 <ANVIDIA. I

kernel

H -> D copy

Example

Non-streams

cudaMemcpy(d_x, h_Xx, size X,
cudaMemcpyHostToDevice);

cudaMemcpy(h_y, d vy, size Y,
cudaMemcpyDevice ToHost)

kernel<<<blockspg, threadspb>>>(d_x, d vy, N);

kernel

kernel

H -> D copy

kernel

H -> D copy

H -> D copy

With streams

for (inti=0;i<c; ++i){
size toffx = (size_x/c) *i;
size toffy =(size y/c)*i;

cudaMemcpyAsync(d_x+offx, h_x+offx, (size x/ c),

cudaMemcpyHostToDevice, stream[i%ns));

Kernel<<< b/c, t, O, stream[i%ns] >>>(d_x+offXx,

d y+offy, N/c);

cudaMemcpyAsync(h_y+offy, d_y+offy, (size x/ c),

cudaMemcpyDevice ToHost, stream|i%ns));

7 <ANVIDIA. I

Default Stream

- Kernels<<<>>> and cudalMemcpy that don't specify a stream are sent to the
Default Stream (Null stream)

» Operations submitted to the Default Stream will:
- walit for all previously submitted work in all streams to finish before executing

- not allow other operations in different streams to begin executing until it is
finished

Stream 1

H -> D copy H -> D copy

Stream 2

Default Stream -

- Converting the Default Stream to an “"ordinary” stream
nvcc --default-stream per-thread ...

8 <ANVIDIA. I

CUDA Events

CUDA Events are markers used for synchronization and signaling between
streams and the Host

Used for timing and complex synchronization between streams
CudaEvents are "recorded” when they are issued

CudaEvents are “completed” when the stream has reached the point where
It was recorded

start, end,;
(&start);
(&end);
(start); // “record” issued into default stream
Kernel<<<b, t (...);

(stop):
(stop); // walit for stream activity to reach stop event
(&float time, start, stop);

for stream signaling- cudaStreamWaitEvent(), makes a stream wait for an
event to happen -

Further Reading

» Going into more technical detail with queues and depthvsbreadth first:
» https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrency\Webinar.pdf

* APIls for Streams and Events
» https://docs.nvidia.com/cuda/cuda-runtime-api/group_ CUDART __STREAM.html
 https://docs.nvidia.com/cuda/cuda-runtime-api/group CUDART EVENT.html#group CUDART __EVENT

- CUDA Programming Guide is always a good place to get a overview of a feature:
 https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html#streams

- Cuda Streams performance best practices:
 https://on-demand.gputechconf.com/qtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

- CUDA Streams lecture
* https://www.olcf.ornl.gov/calendar/cuda-concurrency/ (CUDA Concurrency on Vimeo)

10 < NVIDIA. I

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html#group__CUDART__EVENT
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf
https://www.olcf.ornl.gov/calendar/cuda-concurrency/
https://vimeo.com/442361242

Hands on

https://github.com/matt-stack/TAC-HEP-Training-Feb2023.qit

Ex1. Compute/Copy overlap Ex2. Cuda Event Timing Ex3. Default streams with Nsys

Proiect 4 X Em

‘ = Timeline View .7 l = Q '32 1x /\ 2warnings, 15 messages
2s w +235ms +24Pms +245ms +25l0ms +2515ms +26.0ms +26l5ms +2710ms +275ms +28;0n';5
» CPU (80)

~ CUDA HW (0000:1d:00.0 - NVIDIA ,

» [All Streams]

» 48.9% Default stream 7
¥ 6.4% Stream 15
» 6.4% Stream 19
» 6.4% Stream 20
5 streams hidden...

¥ Threads (8)
v V| [1337778] a.out =

OS runtime libraries

CUDA API

Profiler overhead

Project 4 X Em

= Timeline View v B Q (Jpr—— 1x
| | S T

- é84.8ms

/\ 2warnings, 15 messages

+287.4ms -

L

25 w +284.6ms +286.4ms

+285ms +285.2ms +285.4ms +285.6ms +285.8ms +286ms +286.2ms +286.6ms +286.8ms +287ms +287.2ms

L

» CPU (80)

¥ CUDA HW (0000:1d:00.0 - NVIDIA ,
» [All Streams]

» 48.9% Default stream 7
» 6.4% Stream 15
» 6.4% Stream 19
» 6.4% Stream 20
5 streams hidden...

¥ Threads (8)
v |V [1337778] a.out ~

OS runtime libraries

CUDA API

Profiler overhead | : 1 1 @ nVIDIA
‘ ®

https://github.com/matt-stack/TAC-HEP-Training-Feb2023.git

<A NVIDIA.

