
CUDA Managed Memory

Matti Kortelainen

TAC-HEP

1 March 2023



• Co-convener of CMS Core Software group, lead of CMS' data processing framework, 

CMSSW, development

– Been in CMS since 2008 doing physics analysis, reconstruction software, software performance …

• PhD on search for light charged Higgs boson from University of Helsinki in 2013

• I have been working with CUDA for 5+ years

3/1/2023 Matti Kortelainen | CUDA Managed Memory2

Who am I



• By now you have learned about

– Explicit memory management: (pinned) host memory, device memory, memcpy

– Asynchronicity: execution on host and device proceed independently
--> need to explicitly synchronize host and device

– Concurrent operations with CUDA streams

3/1/2023 Matti Kortelainen | CUDA Managed Memory3

Introduction



• By now you have learned about

– Explicit memory management: (pinned) host memory, device memory, memcpy

– Asynchronicity: execution on host and device proceed independently
--> need to explicitly synchronize host and device

– Concurrent operations with CUDA streams

• Looks complicated. Wouldn't it be nice to be able to simplify?

3/1/2023 Matti Kortelainen | CUDA Managed Memory4

Introduction



• Unified/managed memory or in CUDA is memory that can be accessed on the host and 

on the device, and the CUDA runtime+driver automatically migrate the memory between 

the two

– SYCL calls it "Unified Shared Memory"

• "Shared memory" in CUDA: fast memory that can be accessed by a threads of the same block, kind of 

programmable L1 cache

• "Unified virtual addressing" in CUDA: pinned host memory can be accessed from the device

3/1/2023 Matti Kortelainen | CUDA Managed Memory5

CUDA Unified Memory (or Managed Memory)



3/1/2023 Matti Kortelainen | CUDA Managed Memory6

Simple example



3/1/2023 Matti Kortelainen | CUDA Managed Memory7

Simple example

Memory is allocated with 

cudaMallocManaged()

and deallocated with cudaFree()



3/1/2023 Matti Kortelainen | CUDA Managed Memory8

Simple example

No explicit memory copies needed



3/1/2023 Matti Kortelainen | CUDA Managed Memory9

Simple example

Still need to synchronize before 

accessing the data on host!



• CUDA provides a unified virtual memory address space on both host and device

3/1/2023 Matti Kortelainen | CUDA Managed Memory10

How does it work

Virtual memory address translation
On CPU called Memory Management Unit (MMU)

CPU memory GPU memory



• When a virtual memory address is accessed, the CPU (GPU) Memory Management Unit 

checks if it already knows the virtual memory address

3/1/2023 Matti Kortelainen | CUDA Managed Memory11

How does it work

CPU memory GPU memory



• If MMU knows the physical address, it forwards the access to the corresponding physical 

memory address

3/1/2023 Matti Kortelainen | CUDA Managed Memory12

How does it work

CPU memory GPU memory



• If the MMU does not know the physical address

3/1/2023 Matti Kortelainen | CUDA Managed Memory13

How does it work

CPU memory GPU memory



• If the MMU does not know the physical address, it generates a page fault

3/1/2023 Matti Kortelainen | CUDA Managed Memory14

How does it work

CPU memory GPU memory



• CPU stops executing the user code

3/1/2023 Matti Kortelainen | CUDA Managed Memory15

What is a page fault?

Execution unit

MMU

CPU



• CPU calls specific Operating System kernel code

3/1/2023 Matti Kortelainen | CUDA Managed Memory16

What is a page fault?

CPU

MMU

Execution unit

Some kernel code



• Kernel calls CUDA driver if the driver knows the physical address

3/1/2023 Matti Kortelainen | CUDA Managed Memory17

What is a page fault?

CPU

MMU

Execution unit

CUDA driver code



• If CUDA driver knows the corresponding memory block is on the GPU, it copies the 

memory page (typically 4 kB) to the CPU memory

3/1/2023 Matti Kortelainen | CUDA Managed Memory18

What is a page fault?

CPU

MMU

Execution unit

CUDA driver code

CPU memory

GPU memory



• Driver waits for the memory copy to complete

3/1/2023 Matti Kortelainen | CUDA Managed Memory19

What is a page fault?

CPU

MMU

Execution unit

CUDA driver code

CPU memory

GPU memory



• Driver returns the new physical address to the kernel, who then sets up the MMU 

properly

3/1/2023 Matti Kortelainen | CUDA Managed Memory20

What is a page fault?

CPU

MMU

Execution unit

Kernel

CPU memory

GPU memory



• User code execution resumes

3/1/2023 Matti Kortelainen | CUDA Managed Memory21

How does it work

CPU memory GPU memory



• If CUDA driver is not able to translate the virtual address to physical address on the GPU

3/1/2023 Matti Kortelainen | CUDA Managed Memory22

How does it work

CPU memory GPU memory



• If CUDA driver is not able to translate the virtual address to physical address on the GPU, 

kernel asks from other drivers, and eventually aborts the program with segmentation fault

3/1/2023 Matti Kortelainen | CUDA Managed Memory23

How does it work

CPU memory GPU memory



• As you can see, page faults are quite expensive

– Cost becomes prohibitive if page faults occur often

• Often user code knows beforehand what memory it is going to access

– User code can call cudaMemPrefetchAsync() to request the CUDA runtime+driver to prefetch a 
given memory block from host/device to device/host

• Works best if user code can execute other code on host while the memory transfer is going on,
i.e. ask to prefetch early

• User code can also give hints on memory block usage with cudaMemAdvise()

– Like is it mostly read only, what is the preferred device, etc

3/1/2023 Matti Kortelainen | CUDA Managed Memory24

Optimizations



• Some applications show good performance

– Typically those have heavy computations

3/1/2023 Matti Kortelainen | CUDA Managed Memory25

Performance



• Some other applications do not

– Example from CMS heterogeneous pixel 
reconstruction test using CUDA Unified 

Memory

• More details in
doi:10.1051/epjconf/202125103035

3/1/2023 Matti Kortelainen | CUDA Managed Memory26

Performance

3×

https://doi.org/10.1051/epjconf/202125103035


• On a true unified memory system

– CPU and GPU use the same physical memory

• With heavy computation kernels

– Where memory transfer overheads don't matter in practice

• Complex data structures, with many pointers to other parts of the data structure

– With explicit memory management, upon copying the data structure to device developer would have 

to update all the pointers to point to device memory

• Becomes tedious quickly

• Allows overcommitting GPU memory in a transparent way

• (Large) data structure with sparse access pattern

• More difficult to change program from managed memory to explicit memory in case of 

performance problems than vice versa

3/1/2023 Matti Kortelainen | CUDA Managed Memory27

When is managed memory useful?



3/1/2023 Matti Kortelainen | CUDA Managed Memory28

When is managed memory useful?



• CUDA Unified / Managed memory provides an alternative memory management 

approach to the explicit management

– In many cases the use is simpler

• The actual usefulness depends

– On the application

• Good for complex data structures, sparsely accessed large data structures, overcommitting 
GPU memory

• Bad for applications where the cost of overheads is visible

– On the hardware: integrated vs. discrete GPU

• NVIDIA's implementation on standard C++ parallelization relies on unified memory

3/1/2023 Matti Kortelainen | CUDA Managed Memory29

Summary


