ﬁ U.S. DEPARTMENT OF Office of
&)

ENERGY Science

2= Fermilab

CUDA Managed Memory

Matti Kortelainen
TAC-HEP
1 March 2023

2

Who am |

» Co-convener of CMS Core Software group, lead of CMS' data processing framework,
CMSSW, development

— Beenin CMS since 2008 doing physics analysis, reconstruction software, software performance....
* PhD on search for light charged Higgs boson from University of Helsinki in 2013

* | have been working with CUDA for 5+ years

2% Fermilab

3/1/2023 Matti Kortelainen | CUDA Managed Memory

3

Introduction

By now you have learned about
— Explicit memory management: (pinned) host memory, device memory, memcpy

— Asynchronicity: execution on host and device proceed independently
--> need to explicitly synchronize host and device

— Concurrent operations with CUDA streams

3/1/2023 Matti Kortelainen | CUDA Managed Memory

2% Fermilab

4

Introduction

* By now you have learned about
— Explicit memory management: (pinned) host memory, device memory, memcpy

— Asynchronicity: execution on host and device proceed independently
--> need to explicitly synchronize host and device

— Concurrent operations with CUDA streams

» Looks complicated. Wouldn't it be nice to be able to simplify?

3/1/2023 Matti Kortelainen | CUDA Managed Memory

2% Fermilab

5

CUDA Unified Memory (or Managed Memory)

« Unified/managed memory or in CUDA is memory that can be accessed on the host and
on the device, and the CUDA runtime+driver automatically migrate the memory between

the two
— SYCL calls it "Unified Shared Memory"

"Shared memory" in CUDA: fast memory that can be accessed by a threads of the same block, kind of
programmable L1 cache

"Unified virtual addressing” in CUDA: pinned host memory can be accessed from the device

GPU GPU = CPU CPU

! ! : !

Unified Memory

2= Fermilab

3/1/2023 Matti Kortelainen | CUDA Managed Memory

Simple example

__global__ void kernel(int *array, int n) {
int ind = threadIdx.x + blockIdx.x * blockDim.x;
if (ind < n) {
array[ind] *= 2;

int main() {
int n = 128;
int* array;
cudaMallocManaged(&array, n);
for (int i=0; i<n; ++i) {
array[i] = i*1e0 - 5;
kernel<<<1l, n>>>(array, n);
cudaDeviceSynchronize();
for(int i=@; i<n; ++i) {
std::cout << 1 << " " << array[i] << std::endl;

cudaFree(array);

return @;

6 3/1/2023 Matti Kortelainen | CUDA Managed Memory

2% Fermilab

7

Simple example

__global__ void kernel(int *array, int n) {
int ind = threadIdx.x + blockIdx.x * blockDim.x;
if (ind < n) {
array[ind] *= 2;
}
}

int main() {
int n = 128;
int* array;
cudaMallocManaged(&array, n);

for (int i=0; i<n; ++i) {
array[i] = i*1e0 - 5;

}

kernel<<<1l, n>>>(array, n);
cudaDeviceSynchronize();

for(int i=@; i<n; ++i) {

std::cout << 1 << " " << array[i] << std::endl;

}

cudaFree(array);

return @;

3/1/2023 Matti Kortelainen | CUDA Managed Memory

Memory is allocated with
cudaMallocManaged()

and deallocated with cudaFree()

2% Fermilab

8

Simple example

__global__ void kernel(int *array, int n) {
int ind = threadIdx.x + blockIdx.x * blockDim.x;
if (ind < n) {
array[ind] *= 2;

int main() {
int n = 128;
int* array; No explicit memory copies needed
cudaMallocManaged(&array, n);
for (int i=0; i<n; ++i) {
array[i] = i*1e0 - 5;
kernel<<<1l, n>>>(array, n);
cudaDeviceSynchronize();
for(int i=@; i<n; ++i) {
std::cout << 1 << " " << array[i] << std::endl;

cudaFree(array);

return @;

3/1/2023 Matti Kortelainen | CUDA Managed Memory

2% Fermilab

9

Simple example

__global__ void kernel(int *array, int n) {
int ind = threadIdx.x + blockIdx.x * blockDim.x;
if (ind < n) {
array[ind] *= 2;

int main() {
int n = 128;
int* array;
cudaMallocManaged(&array, n);
for (int i=0; i<n; ++i) {
array[i] = i*1e0 - 5;
kernel<<<1l, n>>>(array, n);
cudaDeviceSynchronize();
for(int i=@; i<n; ++i) {
std::cout << 1 << " " << array[i] << std::endl;

cudaFree(array);

return @;

3/1/2023 Matti Kortelainen | CUDA Managed Memory

Still need to synchronize before
accessing the data on host!

2% Fermilab

How does it work

CUDA provides a unified virtual memory address space on both host and device

CPU memory GPU memory

N

It Virtual memory address translation
On CPU called Memory Management Unit (MMU)

2% Fermilab

10 3/1/2023 Matti Kortelainen | CUDA Managed Memory

How does it work

 When a virtual memory address is accessed, the CPU (GPU) Memory Management Unit
checks if it already knows the virtual memory address

CPU memory GPU memory

array[i] = i*10 - 5;

£% Fermilab

11 3/1/2023 Matti Kortelainen | CUDA Managed Memory

How does it work

« If MMU knows the physical address, it forwards the access to the corresponding physical
memory address

CPU memory GPU memory

array[i] = i*10 - 5;

2% Fermilab

12 3/1/2023 Matti Kortelainen | CUDA Managed Memory

How does it work

» If the MMU does not know the physical address

CPU memory GPU memory

array[i] = i*10 - 5;

2% Fermilab

13 3/1/2023 Matti Kortelainen | CUDA Managed Memory

How does it work

» If the MMU does not know the physical address, it generates a page fault

CPU memory GPU memory

array[i] = i*10 - 5;

2% Fermilab

14 3/1/2023 Matti Kortelainen | CUDA Managed Memory

What is a page fault?

 CPU stops executing the user code

CPU

MMU

/7

array[i] = i*10 - 5;
Execution unit

£% Fermilab

15 3/1/2023 Matti Kortelainen | CUDA Managed Memory

What is a page fault?

» CPU calls specific Operating System kernel code

CPU

MMU

/

Some kernel code
Execution unit

£% Fermilab

16 3/1/2023 Matti Kortelainen | CUDA Managed Memory

What is a page fault?

» Kernel calls CUDA driver if the driver knows the physical address

CPU

MMU

/

CUDA driver code
Execution unit

£% Fermilab

17 3/1/2023 Matti Kortelainen | CUDA Managed Memory

What is a page fault?

« If CUDA driver knows the corresponding memory block is on the GPU, it copies the
memory page (typically 4 kB) to the CPU memory

CPU CPU memory
|||$||||I

MMU

/ GPU memory
—> |||‘|I|||

CUDA driver code
Execution unit

£% Fermilab

18 3/1/2023 Matti Kortelainen | CUDA Managed Memory

What is a page fault?

Driver waits for the memory copy to complete

CPU CPU memory
|||$||||I

MMU

/ GPU memory
—> |||‘|I|||

CUDA driver code
Execution unit

£% Fermilab

19 3/1/2023 Matti Kortelainen | CUDA Managed Memory

20

What is a page fault?

» Driver returns the new physical address to the kernel, who then sets up the MMU
properly

CPU CPU memory
MMU
L] [[1]
/ GPU memory
Kernel EEE EEEEN

Execution unit

2% Fermilab

3/1/2023 Matti Kortelainen | CUDA Managed Memory

How does it work

« User code execution resumes

CPU memory GPU memory

array[i] = i*10 - 5;

2% Fermilab

21 3/1/2023 Matti Kortelainen | CUDA Managed Memory

How does it work

» If CUDA driver is not able to translate the virtual address to physical address on the GPU

CPU memory GPU memory

array[i] = i*10 - 5;

2% Fermilab

22 3/1/2023 Matti Kortelainen | CUDA Managed Memory

How does it work

» If CUDA driver is not able to translate the virtual address to physical address on the GPU,
kernel asks from other drivers, and eventually aborts the program with segmentation fault

CPU memory GPU memory

array[i] = i*10 - 5;

£% Fermilab

23 3/1/2023 Matti Kortelainen | CUDA Managed Memory

24

Optimizations

« As you can see, page faults are quite expensive
— Costbecomes prohibitive if page faults occur often
» Often user code knows beforehand what memory it is going to access

— User code can call cudaMemPrefetchAsync() to requestthe CUDA runtime+driver to prefetcha
given memory block from host/device to device/host

* Works bestif user code can execute other code on host while the memory transfer is going on,
l.e. ask to prefetchearly

« User code can also give hints on memory block usage with cudaMemAdvise()

— Like is it mostly read only, what is the preferred device, etc

2% Fermilab

3/1/2023 Matti Kortelainen | CUDA Managed Memory

Performance

« Some applications show good performance

— Typically those have heavy computations

£% Fermilab

25 3/1/2023 Matti Kortelainen | CUDA Managed Memory

26

Performance

* Some other applications do not

— Example from CMS heterogeneous pixel
reconstructiontest using CUDA Unified
Memory

* More details in
doi:10.1051/epjconf/202125103035

3/1/2023 Matti Kortelainen | CUDA Managed Memory

Throughput (events/s)

17504

1500

1250 1

1000

750 1

500 1

250 1

—— Explicit memory
-4~ Unified memory for conditions
—4— Unified memory

2 4 6 8 10 12
Concurrent events

2% Fermilab

https://doi.org/10.1051/epjconf/202125103035

27

When is managed memory useful?

* On a true unified memory system
— CPU and GPU use the same physical memory
« With heavy computation kernels
— Where memorytransfer overheads don't matter in practice
« Complex data structures, with many pointers to other parts of the data structure

— With explicit memory management, upon copying the data structure to device developerwould have
to update all the pointers to point to device memory

* Becomes tedious quickly
» Allows overcommitting GPU memory in a transparent way
« (Large) data structure with sparse access pattern

* More difficult to change program from managed memory to explicit memory in case of

erformance problems than vice versa .
P P 2= Fermilab

3/1/2023 Matti Kortelainen | CUDA Managed Memory

When is managed memory useful?

NVIDIA Grace Hopper Superchip

f e e e memm—meeey
1
i
i PU LPDDR GPU HBM3
i <96 GB
i
i
546 GB/s 3000 GB/s
4x RA HOPPER 18x NVLINK 4

16x PCle-5
512 GB/s

]
. ;
"GPU HBM3 E
i
]
]
]

NVLINK C2C ——
900 GB/s

a
L
Ll
& o
|
I—
O
I

< 256 GPUs

‘r'lr‘!r'lr!Hrw**"**!ﬂnr\nnr

NVLINK NETWORK

rYYYYYYS

CPU LPDDR5X
< 512 GB

Hardware Coherency

2= Fermilab

28 3/1/2023 Matti Kortelainen | CUDA Managed Memory

29

Summary

« CUDA Unified / Managed memory provides an alternative memory management
approach to the explicit management

— In many cases the use is simpler
» The actual usefulness depends

— On the application

+ Good forcomplexdata structures, sparsely accessed large data structures, overcommitting
GPU memory

« Bad for applications where the cost of overheads is visible

— On the hardware: integrated vs. discrete GPU

* NVIDIA's implementation on standard C++ parallelization relies on unified memory

2% Fermilab

3/1/2023 Matti Kortelainen | CUDA Managed Memory

