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• Co-convener of CMS Core Software group, lead of CMS' data processing framework, 

CMSSW, development

– Been in CMS since 2008 doing physics analysis, reconstruction software, software performance …

• PhD on search for light charged Higgs boson from University of Helsinki in 2013

• I have been working with CUDA for 5+ years
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Who am I



• By now you have learned about

– Explicit memory management: (pinned) host memory, device memory, memcpy

– Asynchronicity: execution on host and device proceed independently
--> need to explicitly synchronize host and device

– Concurrent operations with CUDA streams
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Introduction



• By now you have learned about

– Explicit memory management: (pinned) host memory, device memory, memcpy

– Asynchronicity: execution on host and device proceed independently
--> need to explicitly synchronize host and device

– Concurrent operations with CUDA streams

• Looks complicated. Wouldn't it be nice to be able to simplify?
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Introduction



• Unified/managed memory or in CUDA is memory that can be accessed on the host and 

on the device, and the CUDA runtime+driver automatically migrate the memory between 

the two

– SYCL calls it "Unified Shared Memory"

• "Shared memory" in CUDA: fast memory that can be accessed by a threads of the same block, kind of 

programmable L1 cache

• "Unified virtual addressing" in CUDA: pinned host memory can be accessed from the device
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CUDA Unified Memory (or Managed Memory)
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Simple example
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Simple example

Memory is allocated with 

cudaMallocManaged()

and deallocated with cudaFree()
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Simple example

No explicit memory copies needed
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Simple example

Still need to synchronize before 

accessing the data on host!



• CUDA provides a unified virtual memory address space on both host and device
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How does it work

Virtual memory address translation
On CPU called Memory Management Unit (MMU)

CPU memory GPU memory



• When a virtual memory address is accessed, the CPU (GPU) Memory Management Unit 

checks if it already knows the virtual memory address

3/1/2023 Matti Kortelainen | CUDA Managed Memory11

How does it work

CPU memory GPU memory



• If MMU knows the physical address, it forwards the access to the corresponding physical 

memory address
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How does it work

CPU memory GPU memory



• If the MMU does not know the physical address
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How does it work

CPU memory GPU memory



• If the MMU does not know the physical address, it generates a page fault
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How does it work

CPU memory GPU memory



• CPU stops executing the user code
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What is a page fault?

Execution unit

MMU

CPU



• CPU calls specific Operating System kernel code
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What is a page fault?

CPU

MMU

Execution unit

Some kernel code



• Kernel calls CUDA driver if the driver knows the physical address
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What is a page fault?

CPU

MMU

Execution unit

CUDA driver code



• If CUDA driver knows the corresponding memory block is on the GPU, it copies the 

memory page (typically 4 kB) to the CPU memory
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What is a page fault?

CPU

MMU

Execution unit

CUDA driver code

CPU memory

GPU memory



• Driver waits for the memory copy to complete
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What is a page fault?

CPU

MMU

Execution unit

CUDA driver code

CPU memory

GPU memory



• Driver returns the new physical address to the kernel, who then sets up the MMU 

properly
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What is a page fault?

CPU

MMU

Execution unit

Kernel

CPU memory

GPU memory



• User code execution resumes
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How does it work

CPU memory GPU memory



• If CUDA driver is not able to translate the virtual address to physical address on the GPU
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How does it work

CPU memory GPU memory



• If CUDA driver is not able to translate the virtual address to physical address on the GPU, 

kernel asks from other drivers, and eventually aborts the program with segmentation fault
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How does it work

CPU memory GPU memory



• As you can see, page faults are quite expensive

– Cost becomes prohibitive if page faults occur often

• Often user code knows beforehand what memory it is going to access

– User code can call cudaMemPrefetchAsync() to request the CUDA runtime+driver to prefetch a 
given memory block from host/device to device/host

• Works best if user code can execute other code on host while the memory transfer is going on,
i.e. ask to prefetch early

• User code can also give hints on memory block usage with cudaMemAdvise()

– Like is it mostly read only, what is the preferred device, etc
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Optimizations



• Some applications show good performance

– Typically those have heavy computations
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Performance



• Some other applications do not

– Example from CMS heterogeneous pixel 
reconstruction test using CUDA Unified 

Memory

• More details in
doi:10.1051/epjconf/202125103035
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Performance

3×

https://doi.org/10.1051/epjconf/202125103035


• On a true unified memory system

– CPU and GPU use the same physical memory

• With heavy computation kernels

– Where memory transfer overheads don't matter in practice

• Complex data structures, with many pointers to other parts of the data structure

– With explicit memory management, upon copying the data structure to device developer would have 

to update all the pointers to point to device memory

• Becomes tedious quickly

• Allows overcommitting GPU memory in a transparent way

• (Large) data structure with sparse access pattern

• More difficult to change program from managed memory to explicit memory in case of 

performance problems than vice versa
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When is managed memory useful?
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When is managed memory useful?



• CUDA Unified / Managed memory provides an alternative memory management 

approach to the explicit management

– In many cases the use is simpler

• The actual usefulness depends

– On the application

• Good for complex data structures, sparsely accessed large data structures, overcommitting 
GPU memory

• Bad for applications where the cost of overheads is visible

– On the hardware: integrated vs. discrete GPU

• NVIDIA's implementation on standard C++ parallelization relies on unified memory
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Summary


