
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-7: Introduction to VHDL

Lecture-14: May 3rd 2023

TA
C

-H
EP

 2
02

3

So Far…

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

ü FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

ü Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

ü Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas
• Different Pragmas and their effects on performance
• Practices to follow while writing HLS code – do’s & don’ts

ü LHC and CMS Experiment: Level-1 Trigger System
ü Project: Clustering algorithm for Regional Calorimeter Trigger

Today:
• Questions related to Project
• Introduction to VHDL

TA
C

-H
EP

 2
02

3

Project – Question/Concerns?
Write an algorithm to cluster ECAL and HCAL energies for
Regional Calorimeter Trigger using HLS and synthesis the results

1. Input per tower (ECAL + HCAL)
2. Cluster ECAL energies for each tower
• Divide the RCT card further to make life simple

3. Stitch together the clusters for neighbouring towers
4. Sort the final list
5. Send just 12 towers per RCT region

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

v Provide Input for algo

TA
C

-H
EP

 2
02

3

VHDL

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

VHSIC Hardware Description Language

• VHSIC: Very High Speed Integrated Circuit

TA
C

-H
EP

 2
02

3

VHDL Basic Syntax

• Case – INSENSITIVE language
• Double dash (--) indicates a comment
• (;) End of declaration or a statement

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

Entity

Architecture

Package Process

Function

• Architecture Body
• Architecture declaration

• Component declaration
• Type declarations
• Constant declarations
• Signal declarations
• Functions, procedure

definitions
• Architecture statements

TA
C

-H
EP

 2
02

3

Number Representations in VHDL
• Integers: represented with base-10 (decimal numbers) by default

• 5, 3E2(=300), 2#0111#(=7), 5#341#(=96), 16#7DF#(=2015),

• Binary Values: Written either in single quotes (single bit) or double quotes (multi-
bits)
• ‘0’ (=0), “0101”(=5), b”0101”(=5), O”54”(=44), X”C2F”(=3119)

• Unsigned values: all non-negative numbers
• Range for N-bit word – 0 to 2N -1

• Signed Values:
• N bit words: -2N-1 to 2N-1 -1

• Characters: Extended ASCII table
• ‘A’, ‘$’, “VHDL”, “mp4”

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

TA
C

-H
EP

 2
02

3

VHDL Objects
• CONSTANT: Whose value can’t be changed

• Can be declared in the declarative part of ENTITY, ARCHITECTURE, PACKAGE, BLOCK,
PROCESS, FUNCTION, …

<Syntax> CONSTANT constant_name: constant_type := constant_value

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

CONSTANT bits: INTEGER := 16;
CONSTANT words: INTEGER := 2**bits;
CONSTANT flag: BIT := '1';
CONSTANT mask: BIT_VECTOR(1 TO 8) := "00001111";

TA
C

-H
EP

 2
02

3

VHDL Objects

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

• OTHERS: Useful keyword for making assignments
• Represents all index values that were left unspecified

• The constant below is a = "000000".
CONSTANT a: BIT_VECTOR(5 DOWNTO 0) := (OTHERS=>'0');

• The next constant is b = "01111111" (index 7 gets '0', the others, '1’).
CONSTANT b: BIT_VECTOR(7 DOWNTO 0) := (7=>'0', OTHERS=>'1');

• The signal below is c = "01100000" ("|" means "or").
SIGNAL c: STD_LOGIC_VECTOR(1 TO 8) := (2|3=>'1', OTHERS=>'0');

• The variable below is d = "1111111100000000".
VARIABLE d: BIT_VECTOR(1 TO 16) := (1 TO 8=>'1', OTHERS=>'0');

TA
C

-H
EP

 2
02

3

Signal vs Variable
SIGNAL
• Serves to pass values in/out of the circuit, as well as b/w its internal units
• Represents circuit interconnects (wires)
• All ports of an entity are signal by default
• Inside sequential code, its update is not immediate, instead, new value is

expected after the conclusion of current process or sub-program
• In concurrent code: multiple assignments will lead to compilation errors

VARIABLE
• Represent only local information as it can be seen/modified inside the sequential

unit
• Update is immediate
• Mutiple assignments to same variables are fine

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

TA
C

-H
EP

 2
02

3

VHDL Operators

Logical Operators
and Logical And
or Logical Or
nand Logical Nand
nor Logical Nor
xor Logical Xor
xnor Logical Xnor

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

Relational Operators
= Equal
/= Not Equal
< Less Than
<= Less Than or Equal To
> Greater Than
>= Greater Than or Equal To

Concatenation Operators
& Concatenate

TA
C

-H
EP

 2
02

3

Arithmetic Operators

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

Arthimetic Operators
+, -, *, /
** Exponentiation
mod Modulo division
rem Modulo remainder
abs Absolute Value

• These operators are defined for “integer” and
“real” datatypes

• For “std_logic” data type, these operators are
overloaded in “ieee.std_logic_unsigned”
package

TA
C

-H
EP

 2
02

3

Shift Operator

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

Shift left logic SLL Positions on the right are filled with '0's

Shift right logic SRL Positions on the left are filled with '0's

Shift left arithmetic SLA Rightmost bit is replicated on the right

Shift right arithmetic SRA Leftmost bit is replicated on the left

Rotate Left ROL Circular shift to the left

Rotate Right ROR Circular shift to the right

• Shift operators are used for shifting data vectors
• BIT_VECTOR

TA
C

-H
EP

 2
02

3

Shift Operator - Example

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

y <= x SLL 2; --y <= “00100” (y <= x(2 DOWNTO 0) & “00”;
y <= x SLA 2; --y <= “00111” (y <= x(2 DOWNTO 0) & x(0) & x(0);
y <= x SRL 3; --y <= “00001” (y <= “000” & x(4 DOWNTO 3);
y <= x SRA 3; --y <= “00001” (y <= x(4) & x(4) & x(4) & x(4 DOWNTO 3);
y <= x ROL 2; --y <= “00101” (y <= x(2 DOWNTO 0) & x(4 DOWNTO 3) ;
y <= x SRL -2; -- same as “x SLL 2”

x = “01001”

TA
C

-H
EP

 2
02

3

Data-Types

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

scalar

bit
boolean
integer
character
std_ulogic
std_logic

composite

bit vector
string
std_ulogic_vector
std_logic_vector

• BIT: 0 or 1:
• Values assigned in single quotes: ‘0’ or ‘1’

• BIT_VECTOR:
• Vector version of BIT types consisting of two or more bits
• Each bit in BIT_VECTOR can only have value 0 or 1
• Values assigned in double quotes: “1011”

• STD_LOGIC:

TA
C

-H
EP

 2
02

3

Standard Logic Data Types
• STD_(U)LOGIC and STD_LOGIC_VECTOR

• “U” stand for unresolved sub-type

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

TYPE STD_ULOGIC IS ('U','X','0','1','Z','W','L','H','-’);
TYPE STD_LOGIC IS resolved STD_ULOGIC;

‘U’ Uninitialized
‘X’ Forcing unknown
‘0’ Forcing Low
‘1’ Forcing High
‘Z’ High impedance
‘W’ Weak unknown
‘L’ Weak Low
‘H’ Weak High
‘-’ Don’t care

TA
C

-H
EP

 2
02

3

Entity
• Names entity and defines interfaces between entity and its environment
• The I/O ports of the circuit are declared in the entity

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

ENTITY entity-name IS
PORT (

port-name-A: port_mode signal_type;
port-name-B: port_mode signal_type;
…);

END [ENTITY][entity-name];

library ieee;
use ieee.std_logic_1164.all;

entity EXAMPLE is
port (

A,B,C : in std_logic;
D,E : out std_logic

);
end EXAMPLE;

“entity-name” can be any word except VHDL and other VHDL keywords

TA
C

-H
EP

 2
02

3

Entity – more options

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

ENTITY entity-name IS
[GENERIC (

const_name: const_type const_value;
…);]

[PORT (
port-name-A: port_mode signal_type;
port-name-B: port_mode signal_type;
…);]

[entity_statement_part]
[BEGIN

entity_statement_part]
END [ENTITY][entity-name];

Optional GENERIC section (before PORT):
• Declaring constants that are globally visible to the

design, including to PORT

• Parameterize a design, conferring code more flexibity
and reusability

• Only declaration allowed before PORT

Declarative (optional) part, and the statements (code) part (from BEGIN down:
• Rarely used
• Contains, sub-program declarations, type declarations, constant declaration,

attribute declarations, etc.

TA
C

-H
EP

 2
02

3

Entity – more options

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

ENTITY entity-name IS
[GENERIC (

const_name: const_type const_value;
…);]

[PORT (
port-name-A: port_mode signal_type;
port-name-B: port_mode signal_type;
…);]

[entity_statement_part]
[BEGIN

entity_statement_part]
END [ENTITY][entity-name];

Optional GENERIC section (before PORT): declaring
constants that are globally visible to the design,
including to PORT

• Parameterize a design, conferring code more flexibity
and reusability

• Only declaration allowed before PORT

ENTITY entity_name IS
GENERIC (

m: INTEGER := 8;
n: BIT_VECTOR(3 DOWNTO 0) := "0101”

);
PORT (...);

END entity_name;

TA
C

-H
EP

 2
02

3

Example

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

library ieee;
use ieee.std_logic_1164.all;

ENTITY example IS
PORT (

i_A : in std_logic;
i_B : in std_logic;
o_AND : out std_logic

);
END example;

ARCHITECTURE behav OF example IS
BEGIN

p_PROCESS: PROCESS (i_A, i_B)
BEGIN

o_AND <= i_A and i_B;
END PROCESS p_PROCESS;

END behav;

i_A

i_B
o_AND

An AND Gate

TA
C

-H
EP

 2
02

3

Concurrent Code
• Combinations Logic: Output depend solely on the current inputs

• No memory needed

• Sequential logic: Output depend on previous system state(s)
• Storage needed
• Clock needed to control system evolution
• Reset signal

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

TA
C

-H
EP

 2
02

3

Concurrent statements

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

• WHEN-ELSE

• WITH-SELECT-WHEN

TA
C

-H
EP

 2
02

3

WHEN statement

WHEN: Simplest conditional statement
• Approximately equivalent to IF statement

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

assignment_expression WHEN conditions ELSE
assignment_value WHEN conditions ELSE

...;

x <= ‘0’ WHEN rst=‘0’ ELSE
‘1’ WHEN a='0’ OR b='1' ELSE
'-’ ; --don’t care

y <= ”00" WHEN (a AND b)="01" ELSE
"11” WHEN (a AND b)="10" ELSE
"ZZ"; --high impedance

TA
C

-H
EP

 2
02

3

SELECT statement
SELECT: Another Concurrent statement
• Approximately equivalent to CASE statement
• All values of signal must be listed
• Values must be mutually exclusive

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

WITH identifier SELECT
assignment_expression WHEN values

assignment_value WHEN values
...;

WITH control SELECT
y <= "000" WHEN 0 | 1,

"100" WHEN 2 TO 5,
"Z--" WHEN OTHERS;

WITH (a AND b) SELECT
y <= "00" WHEN "001",

"11" WHEN "100",
UNAFFECTED WHEN OTHERS;

TA
C

-H
EP

 2
02

3

Sequential statements

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

• IF-THEN-ELSE
• CASE-WHEN
• LOOP
• WAIT

TA
C

-H
EP

 2
02

3

IF Statement

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

[label:] IF conditions THEN
assignments;

ELSIF conditions THEN
assignments;

...

ELSE
assignments;

END IF [label];

IF (x<y) THEN
temp:= "00001111";

ELSIF (x=y AND w='0') THEN
temp:= "11110000";

ELSE
temp := (OTHERS => '0’);

END IF;

IF, WAIT, LOOP, CASE statements are intended for sequential code, can only be used inside
PROCESS or sub-program

TA
C

-H
EP

 2
02

3

CASE Statement
• CASE and SELECT are very similar
• CASE is for concurrent code, SELECT is for sequential code

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

WITH sel & ena SELECT
x <= a WHEN "00" | "11",

b WHEN "01",
c WHEN OTHERS;

WITH sel & ena SELECT
y <= "0000" WHEN "11",

"1--1" WHEN OTHERS;

CASE sel & ena IS
WHEN "00” => x <= a; y <= "1--1";
WHEN "01" => x <= b; y <= "1--1";
WHEN "11" => x <= a; y <= "0000";
WHEN OTHERS => x <= c; y <= "1--1";

END CASE;

TA
C

-H
EP

 2
02

3

LOOP Statements
• LOOP is used when a piece of code must be instantiated several times

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

[label:] LOOP
sequential_statements

END LOOP [label];

[label:] FOR identifier IN range LOOP
sequential_statements

END LOOP [label];

[label:] WHILE condition LOOP
sequential_statements

END LOOP [label];

Unconditional LOOP LOOP with FOR

LOOP with WHILE [loop_label:] [FOR identifier IN range] LOOP
...

[exit_label:] EXIT [loop_label] [WHEN condition];
...

END LOOP [loop_label];

LOOP with EXIT

TA
C

-H
EP

 2
02

3

LOOP Statements – Examples

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

LOOP
WAIT UNTIL clk='1’;
count := count + 1;

END LOOP;

Unconditional LOOP
FOR i IN 0 TO 5 LOOP

x(i) <= a(i) AND b(5-i);
y(0, i) <= c(i);

END LOOP;

LOOP with FOR

WHILE (i<10) LOOP
WAIT UNTIL clk'EVENT AND clk='1’;
...

END LOOP;

FOR i IN data'RANGE LOOP
CASE data(i) IS

WHEN '0' => count:=count+1;
WHEN OTHERS => EXIT;

END CASE;
END LOOP;

LOOP with EXITLOOP with WHILE

TA
C

-H
EP

 2
02

3

VHDL EDA Playground

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

https://www.edaplayground.com/x/A4

Electronic Design Automation

https://www.edaplayground.com/x/A4

TA
C

-H
EP

 2
02

3

Summary
üIntroduction to FPGA and its basic architecture

üA guide to begin with HLS programs

üImportance & effect of different pragma’s

üBrief introduction to VHDL programming

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

TA
C

-H
EP

 2
02

3

Thank you!

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

Hope you enjoyed and learnt something new!

TA
C

-H
EP

 2
02

3

Questions?

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 32

TA
C

-H
EP

 2
02

3

Additional material

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 33

TA
C

-H
EP

 2
02

3

Assignment submission

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 34

• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week

• Try to submit by following week’s Tuesday

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

TA
C

-H
EP

 2
02

3

Assignment Week-3

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 35

• Use target device: xc7k160tfbg484-2
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a

TA
C

-H
EP

 2
02

3

Assignment Week-4
1. Do a matrix multiplication of two 1-dimensional arrays –

A[N]*B[N], where N > 5
a) Report synthesis results without any pragma directives
b) Add as many pragma directives possible

i. Report any conflicts (if reported in logs) between two pragmas

2. Compare the analysis perspective (Performance) for different
case shared today

3. For Array_partitioning, instead of using complete, use block
and cyclic with different factors

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 36

TA
C

-H
EP

 2
02

3

Assignment Week-5

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 37

1. Do exercise mention on slide-24
2. A matrix multiplication using two for loops and compare

results for pragma loop_flatten & unroll
3. Write a simple program doing arithmetic operations(+, -, *, /,

%) between two variable use of arbitrary precision to
compare results between stand c/c++ data types and using
ap_(u)int<N>

4. Write a program using an array with N(=10/15/20) elements
and then restructure the code with a struct having N-data
member. Compare the results of two programs

TA
C

-H
EP

 2
02

3

Project
Write an algorithm to cluster ECAL and HCAL energies for
Regional Calorimeter Trigger using HLS and synthesis the
results
1. Input per tower (ECAL + HCAL)
2. Cluster ECAL energies for each tower
• Divide the RCT card further to make life simple

3. Stitch together the clusters for neighbouring towers
4. Sort the final list
5. Send just 12 towers per RCT region

May 3, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 38

TA
C

-H
EP

 2
02

3

Jargons

May 3, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 39

