
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-7: Introduction to VHDL

Lecture-13: May 2nd 2023

TA
C

-H
EP

 2
02

3

So Far…

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

ü FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

ü Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

ü Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas
• Different Pragmas and their effects on performance
• Practices to follow while writing HLS code – do’s & don’ts

ü LHC and CMS Experiment: Level-1 Trigger System
ü Project: Clustering algorithm for Regional Calorimeter Trigger

Today:
• Questions related to Project
• Introduction to VHDL

TA
C

-H
EP

 2
02

3

Project – Question/Concerns?
Write an algorithm to cluster ECAL and HCAL energies for
Regional Calorimeter Trigger using HLS and synthesis the results

1. Input per tower (ECAL + HCAL)
2. Cluster ECAL energies for each tower
• Divide the RCT card further to make life simple

3. Stitch together the clusters for neighbouring towers
4. Sort the final list
5. Send just 12 towers per RCT region

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

TA
C

-H
EP

 2
02

3

VHDL

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

VHSIC Hardware Description Language

TA
C

-H
EP

 2
02

3

VHDL

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

VHSIC Hardware Description Language

• VHSIC: Very High Speed Integrated Circuit

TA
C

-H
EP

 2
02

3

VHDL
• Is an industry standard language used to describe hardware from the abstract to

the concrete level
• Standardized as IEEE standards 1076—1987, 1076-1993 & 1076-1164 (standard

logic data type)
• Specify the behaviour and structure of a digital circuit
• Concurrent and sequential statements

• Powerful language with numerous language constructs capable of describing
very complex behaviour

• One of the two languages used to design FPGAs and ASICs

• Verilog is another, equally popular, hardware description language (HDL)

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

TA
C

-H
EP

 2
02

3

New to VHDL
• a <= b

• a gets the value of b

• a <= b after 10 ns
• a get the value of b when 10ns of time have elapsed

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

TA
C

-H
EP

 2
02

3

New to VHDL

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

In_A

In_B
out_AND

An AND Gate

Lets Create a VHDL file that describes an And Gate

signal and_gate : std_logic;
and_gate <= input_1 and input_2;

In_A

In_B
out_OR

An OR Gate

signal and_gate : std_logic;
and_gate <= input_1 or input_2;

TA
C

-H
EP

 2
02

3

VHDL design unit
A VHDL design unit consist of:
• Entity declaration

• Names entity and defines interfaces
between entity and its environment

• Architecture
• Establishes relationship between inputs and

outputs of design

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

ENTITY entity_name IS
PORT (name_list : mode type);
END entity_name;

ARCHITECTURE body_name OF entity _name IS
-- declarative_statements
BEGIN
-- activity_statements
END body_name;

§ Entities and Architectures are used together to define a piece of functionality

§ Only one entity and architecture for each file

TA
C

-H
EP

 2
02

3

Entity Declaration
• Names entity and defines interfaces between entity and its environment
• The I/O ports of the circuit are declared in the entity

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

entity entity-name is port (
port-name-A: mode type;
port-name-B: mode type;
port-name-C: mode type;
…
);

end [entity][entity-name];

library ieee;
use ieee.std_logic_1164.all;

entity EXAMPLE is
port (

A,B,C : in std_logic;
D,E : out std_logic

);
end EXAMPLE;

Large FPGA design is broken into many entity combinations
• The entity contains port map, which is used to define all input and output

signals for a particular entity

TA
C

-H
EP

 2
02

3

Port
• Each I/O signal in the entity statement is referred to as port

• A port is analogous to a pin on a schematic

• A port is a data object

• Can be assigned values

• Can be used in expressions

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

TA
C

-H
EP

 2
02

3

Mode
• The mode describes the direction in which data is transferred through a

port
• There are 4 different modes:

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

Mode Description

in Data only flows into the entity (input)

out Data only flows out of the entity (output)

Inout Data flows into or out of the entity (bidirectional)

buffer Used for internal feedback

TA
C

-H
EP

 2
02

3

Type
• VHDL is a strongly typed language

• Data objects of different types cannot be assigned to one another without
the use of a type-conversion function

• Two broad categories of data types:
• Scalar – stores single value
• Composite – stores multiple values

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

scalar

bit
boolean
integer
character
std_ulogic
std_logic

composite

bit vector
string
std_ulogic_vector
std_logic_vector

TA
C

-H
EP

 2
02

3

Type
• VHDL is a strongly typed language

• Data objects of different types cannot be assigned to one another without
the use of a type-conversion function

• Two broad categories of data types:
• Scalar – stores single value
• Composite – stores multiple values

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

scalar

bit
boolean
integer
character
std_ulogic
std_logic

composite

bit vector
string
std_ulogic_vector
std_logic_vector

TA
C

-H
EP

 2
02

3

Entity Declaration - Example

entity FULL_ADDER is
port (

A, B, Cin: in std_logic;
S: out std_logic;

Cout: out std_logic;
);

end FULL_ADDER;

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

Full Adder

A B

Cin Cout

S

TA
C

-H
EP

 2
02

3

Architecture Declaration

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

• Establishes relationship between inputs and outputs of design

ARCHITECTURE architecture_name OF entity _name IS
-- declarative_statements
BEGIN
-- architecture body
END [architecture][architecture_name];

• Several different models or styles may be used in the architecture body including:
• Behavioral: set of statements to model the function or behavior

• Dataflow: concurrent statements, order is unimportant
• Algorithmic: sequential statements, ordering importamt

• Structural

• These models allow to describe the design at different levels of abstraction

TA
C

-H
EP

 2
02

3

Architecture Statement
• One or more architecture statements may be associated with an entity

statement
• Only one may be referenced at a time

• Declarations
• Signals and components

• Architecture body
• Statements that describe the functionality of the design (i.e., the circuit)

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

TA
C

-H
EP

 2
02

3

Some Coding Guidelines
High readability of the code
Less error prone

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

Prefix Description Details

i_ Input signal • Most important style
• Difficult & annoying to look through the code to determine

the direction of a signal
• i_address, o_data_valid / address, data_valido_ Output signal

r_ Register signal (has
registered logic)

• Second most important style
• Distinguishes signal as register or wire
• Register: have initial conditions
• Wire: Should never appear on left hand side of an

assignment operator in a sequential process
w_ Wire signal (has no registered

logic)

c_ Constant
• Helpful indicatorsg_ Generic

t_ User-defined Type

TA
C

-H
EP

 2
02

3

Entity/Architecture Example

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

library ieee;
use ieee.std_logic_1164.all;

entity example_entity_architecture is
port (

i_bit_1 : in std_logic;
i_bit_2 : in std_logic;
o_bit : out std_logic

);
end example_entity_architecture;

architecture behave of
example_entity_architecture is
begin

p_PROCESS: process (i_bit_1, i_bit_2)
begin

o_bit <= i_bit_1 and i_bit_2;
end process p_PROCESS;

end behave;

TA
C

-H
EP

 2
02

3

VHDL Reserved Words

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

TA
C

-H
EP

 2
02

3

VHDL Operators

Logical Operators
and Logical And
or Logical Or
nand Logical Nand
nor Logical Nor
xor Logical Xor
xnor Logical Xnor

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

Relational Operators
= Equal
/= Not Equal
< Less Than
<= Less Than or Equal To
> Greater Than
>= Greater Than or Equal To

Concatenation Operators
& Concatenate

TA
C

-H
EP

 2
02

3

Signal/Variable
• Signal: Represents interconnection wires that connect component instantiation

ports together
• Sometimes referred as fundamental unit of VHDL
• Can be used inside or outside processes
• Can be used in multiple processes but assigned only in one
• Defined in architecture before begin statement
• Assignment operator (<=)

• Variable: Used for local storage of temporary data
• Can be used only inside a process
• Created in one process, can’t be used in another (like a local variable in C/C++)
• Need to be defined aftere keyword process before keyword begin
• Assignment operator (:=)

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

TA
C

-H
EP

 2
02

3

Signal/Variable

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity variable_vs_signal is
port (

i_clk : in std_logic;
o_var_done : out std_logic;
o_sig_done : out std_logic

);
end variable_vs_signal;

architecture rtl of variable_vs_signal is

signal r_Var_Done : std_logic := '0';
signal r_Count : natural range 0 to 6 := 0;
signal r_Sig_Done : std_logic := '0';

begin

VAR_VS_SIG : process (i_clk)
variable v_Count : natural range 0 to 5 := 0;

begin
if rising_edge(i_clk) then

v_Count := v_Count + 1; -- Variable
r_Count <= r_Count + 1; -- Signal

-- Variable Checking
if v_Count = 5 then

r_Var_Done <= '1';
v_Count := 0;

else
r_Var_Done <= '0';

end if;

-- Signal Checking
if r_Count = 5 then

r_Sig_Done <= '1';
r_Count <= 0;

else
r_Sig_Done <= '0';

end if;

end if;
end process VAR_VS_SIG;

o_var_done <= r_Var_Done;
o_sig_done <= r_Sig_Done;

end rtl;

TA
C

-H
EP

 2
02

3

Example: AND gate

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

In_A

In_B
out_Res

An AND Gate

Lets Create a VHDL file that describes an And Gate

library ieee;
use ieee.std_logic_1164.all;

entity example_and is
port (

input_1 : in std_logic;
input_2 : in std_logic;
and_result : out std_logic
);

end example_and;

architecture rtl of example_and is
signal and_gate : std_logic;

begin
and_gate <= input_1 and input_2;
and_result <= and_gate;

end rtl;

Code defines an architecture called rtl of entity
example_and

TA
C

-H
EP

 2
02

3

For Loop
• For loop perform differently in a software language than in VHDL
• For loop in synthesizable code are used to expand replicated logic

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

// Example software Code:
For (int i=0; i<10; i++)

data[i] = data[i] + 1;

P_INCREMENT : process (clock)
begin

if rising_edge(clock) then
if index < 10 then

data(index) <= data(index) + 1;
index <= index + 1;

end if;
end if;

end process P_INCREMENT;

TA
C

-H
EP

 2
02

3

Some Common Terms
• Entity: Most basic building block in a design
• Architecture: Describes behavior of the entity
• Configuration: Used to bind a component instance to an entity-architecture pair

• Like a parts list for a design, which part to use for each part in the design
• Package: Collection of commonly used data types and sub-programs used in a design
• Driver: Source on a signal

• If a signal is driven by two sources, then when both sources are active, the signal will have two drives

• Bus: A group of signals or a particular method of communicattion
• Attrbute: Data that are attached to VHDL objects or predefined data about VHDL objects
• Generic: VHDL’s term of a parameter that passes information to an entity
• Process: Basic unit of execution in VHDL

• All operations that are performed, broken into single or multiple processes

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

TA
C

-H
EP

 2
02

3

VHDL Playground

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

https://www.edaplayground.com/x/A4

https://www.edaplayground.com/x/A4

TA
C

-H
EP

 2
02

3

Example

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

.

.

.

TA
C

-H
EP

 2
02

3

Questions?

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

TA
C

-H
EP

 2
02

3

Additional material

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

TA
C

-H
EP

 2
02

3

Assignment submission

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week

• Try to submit by following week’s Tuesday

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

TA
C

-H
EP

 2
02

3

Assignment Week-3

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 32

• Use target device: xc7k160tfbg484-2
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a

TA
C

-H
EP

 2
02

3

Assignment Week-4
1. Do a matrix multiplication of two 1-dimensional arrays –

A[N]*B[N], where N > 5
a) Report synthesis results without any pragma directives
b) Add as many pragma directives possible

i. Report any conflicts (if reported in logs) between two pragmas

2. Compare the analysis perspective (Performance) for different
case shared today

3. For Array_partitioning, instead of using complete, use block
and cyclic with different factors

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 33

TA
C

-H
EP

 2
02

3

Assignment Week-5

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 34

1. Do exercise mention on slide-24
2. A matrix multiplication using two for loops and compare

results for pragma loop_flatten & unroll
3. Write a simple program doing arithmetic operations(+, -, *, /,

%) between two variable use of arbitrary precision to
compare results between stand c/c++ data types and using
ap_(u)int<N>

4. Write a program using an array with N(=10/15/20) elements
and then restructure the code with a struct having N-data
member. Compare the results of two programs

TA
C

-H
EP

 2
02

3

Project
Write an algorithm to cluster ECAL and HCAL energies for
Regional Calorimeter Trigger using HLS and synthesis the
results
1. Input per tower (ECAL + HCAL)
2. Cluster ECAL energies for each tower
• Divide the RCT card further to make life simple

3. Stitch together the clusters for neighbouring towers
4. Sort the final list
5. Send just 12 towers per RCT region

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 35

TA
C

-H
EP

 2
02

3

Jargons

May 2, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 36

