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So Far…
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ü FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

ü Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

ü Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas
• Different Pragmas and their effects on performance
• Practices to follow while writing HLS code – do’s & don’ts

ü LHC and CMS Experiment: Level-1 Trigger System
ü Project: Clustering algorithm for Regional Calorimeter Trigger

Today:
• Questions related to Project
• Introduction to VHDL
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Project – Question/Concerns?
Write an algorithm to cluster ECAL and HCAL energies for 
Regional Calorimeter Trigger using HLS and synthesis the results

1. Input per tower (ECAL + HCAL)
2. Cluster ECAL energies for each tower
• Divide the RCT card further to make life simple

3. Stitch together the clusters for neighbouring towers
4. Sort the final list
5. Send just 12 towers per RCT region
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VHDL
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VHSIC Hardware Description Language
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VHDL
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VHSIC Hardware Description Language

• VHSIC: Very High Speed Integrated Circuit
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VHDL
• Is an industry standard language used to describe hardware from the abstract to 

the concrete level
• Standardized as IEEE standards 1076—1987, 1076-1993 & 1076-1164 (standard 

logic data type)
• Specify the behaviour and structure of a digital circuit
• Concurrent and sequential statements

• Powerful language with numerous language constructs capable of describing 
very complex behaviour

• One of the two languages used to design FPGAs and ASICs

• Verilog is another, equally popular, hardware description language (HDL)
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New to VHDL
• a <= b

• a gets the value of b

• a <= b after 10 ns
• a get the value of b when 10ns of time have elapsed
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New to VHDL
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In_A

In_B
out_AND

An AND Gate

Lets Create a VHDL file that describes an And Gate

signal and_gate : std_logic;
and_gate <= input_1 and input_2;

In_A

In_B
out_OR

An OR Gate

signal and_gate : std_logic;
and_gate <= input_1 or input_2;
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VHDL design unit
A VHDL design unit consist of:
• Entity declaration

• Names entity and defines interfaces 
between entity and its environment

• Architecture
• Establishes relationship between inputs and 

outputs of design
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ENTITY entity_name IS
PORT (name_list : mode type);
END entity_name;

ARCHITECTURE body_name OF entity _name IS
-- declarative_statements
BEGIN
-- activity_statements
END body_name;

§ Entities and Architectures are used together to define a piece of functionality

§ Only one entity and architecture for each file
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Entity Declaration
• Names  entity and defines interfaces between entity and its environment
• The I/O ports of the circuit are declared in the entity
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entity entity-name is port ( 
port-name-A: mode type; 
port-name-B:  mode type; 
port-name-C: mode type;
… 
); 

end [entity][entity-name];

library ieee;
use ieee.std_logic_1164.all;

entity EXAMPLE is
port ( 

A,B,C : in std_logic; 
D,E : out std_logic

);
end EXAMPLE;

Large FPGA design is broken into many entity combinations
• The entity contains port map, which is used to define all input and output 

signals for a particular entity
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Port
• Each I/O signal in the entity statement is referred to as port

• A port is analogous to a pin on a schematic

• A port is a data object

• Can be assigned values

• Can be used in expressions
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Mode
• The mode describes the direction in which data is transferred through a 

port
• There are 4 different modes:

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

Mode Description

in Data only flows into the entity (input)

out Data only flows out of the entity (output)

Inout Data flows into or out of the entity (bidirectional)

buffer Used for internal feedback
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Type
• VHDL is a strongly typed language

• Data objects of different types cannot be assigned to one another without 
the use of a type-conversion function

• Two broad categories of data types:
• Scalar – stores single value
• Composite – stores multiple values
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scalar

bit
boolean
integer
character
std_ulogic
std_logic

composite

bit vector
string
std_ulogic_vector
std_logic_vector
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Type
• VHDL is a strongly typed language
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std_ulogic
std_logic
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bit vector
string
std_ulogic_vector
std_logic_vector



TA
C

-H
EP

 2
02

3

Entity Declaration - Example

entity FULL_ADDER is
port ( 

A, B, Cin:   in std_logic; 
S:  out std_logic; 

Cout: out std_logic;
);

end FULL_ADDER;
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Full Adder

A B

Cin Cout

S
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Architecture Declaration
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• Establishes relationship between inputs and outputs of design

ARCHITECTURE architecture_name OF entity _name IS
-- declarative_statements
BEGIN
-- architecture body
END [architecture][architecture_name];

• Several different models or styles may be used in the architecture body including: 
• Behavioral: set of statements to model the function or behavior

• Dataflow: concurrent statements, order is unimportant
• Algorithmic: sequential statements, ordering importamt

• Structural

• These models allow to describe the design at different levels of abstraction
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Architecture Statement
• One or more architecture statements may be associated with an entity 

statement
• Only one may be referenced at a time

• Declarations
• Signals and components

• Architecture body
• Statements that describe the functionality of the design (i.e., the circuit)
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Some Coding Guidelines
High readability of the code
Less error prone
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Prefix Description Details

i_ Input signal • Most important style
• Difficult & annoying to look through the code to determine 

the direction of a signal
• i_address, o_data_valid / address, data_valido_ Output signal

r_ Register signal (has 
registered logic)

• Second most important style
• Distinguishes signal as register or wire
• Register: have initial conditions 
• Wire: Should never appear on left hand side of an 

assignment operator in a sequential process
w_ Wire signal (has no registered 

logic)

c_ Constant
• Helpful indicatorsg_ Generic

t_ User-defined Type
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Entity/Architecture Example

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

library ieee;
use ieee.std_logic_1164.all;

entity example_entity_architecture is
port (

i_bit_1 : in std_logic;
i_bit_2 : in std_logic;
o_bit : out std_logic

);
end example_entity_architecture;

architecture behave of 
example_entity_architecture is
begin

p_PROCESS: process (i_bit_1, i_bit_2) 
begin

o_bit <= i_bit_1 and i_bit_2;
end process p_PROCESS;

end behave;
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VHDL Reserved Words
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VHDL Operators

Logical Operators
and Logical And
or Logical Or
nand Logical Nand
nor Logical Nor
xor Logical Xor
xnor Logical Xnor
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Relational Operators
= Equal
/= Not Equal
< Less Than
<= Less Than or Equal To
> Greater Than
>= Greater Than or Equal To

Concatenation Operators
& Concatenate
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Signal/Variable 
• Signal: Represents interconnection wires that connect component instantiation 

ports together
• Sometimes referred as fundamental unit of VHDL
• Can be used inside or outside processes
• Can be used in multiple processes but assigned only in one
• Defined in architecture before begin statement
• Assignment operator (<=)

• Variable: Used for local storage of temporary data
• Can be used only inside a process
• Created in one process, can’t be used in another (like a local variable in C/C++)
• Need to be defined aftere keyword process before keyword begin
• Assignment operator (:=)
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Signal/Variable 
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library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity variable_vs_signal is
port (

i_clk : in std_logic;
o_var_done : out std_logic;
o_sig_done : out std_logic

);
end variable_vs_signal;

architecture rtl of variable_vs_signal is

signal r_Var_Done : std_logic := '0';
signal r_Count : natural range 0 to 6 := 0;
signal r_Sig_Done : std_logic := '0';

begin

VAR_VS_SIG : process (i_clk)
variable v_Count : natural range 0 to 5 := 0;

begin
if rising_edge(i_clk) then

v_Count :=  v_Count + 1; -- Variable
r_Count <=  r_Count + 1; -- Signal

-- Variable Checking
if v_Count = 5 then

r_Var_Done <= '1';
v_Count := 0;

else
r_Var_Done <= '0';

end if;

-- Signal Checking
if r_Count = 5 then

r_Sig_Done <= '1';
r_Count <= 0;

else
r_Sig_Done <= '0';

end if;

end if;
end process VAR_VS_SIG;

o_var_done <=  r_Var_Done;
o_sig_done <=  r_Sig_Done;

end rtl;
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Example: AND gate
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In_A

In_B
out_Res

An AND Gate

Lets Create a VHDL file that describes an And Gate

library ieee;
use ieee.std_logic_1164.all;

entity example_and is
port (

input_1 : in std_logic;
input_2 : in std_logic;
and_result : out std_logic
);

end example_and;

architecture rtl of example_and is
signal and_gate : std_logic;

begin
and_gate <= input_1 and input_2;
and_result <= and_gate;

end rtl;

Code defines an architecture called rtl of entity 
example_and
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For Loop
• For loop perform differently in a software language than in VHDL
• For loop in synthesizable code are used to expand replicated logic
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// Example software Code: 
For (int i=0; i<10; i++)

data[i] = data[i] + 1;

P_INCREMENT : process (clock)
begin

if rising_edge(clock) then
if index < 10 then

data(index)  <= data(index) + 1;
index <= index + 1;

end if;
end if;

end process P_INCREMENT;
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Some Common Terms
• Entity: Most basic building block in a design
• Architecture: Describes behavior of the entity
• Configuration: Used to bind a component instance to an entity-architecture pair

• Like a parts list for a design, which part to use for each part in the design
• Package: Collection of commonly used data types and sub-programs used in a design
• Driver: Source on a signal

• If a signal is driven by two sources, then when both sources are active, the signal will have two drives

• Bus: A group of signals or a particular method of communicattion
• Attrbute: Data that are attached to VHDL objects or predefined data about VHDL objects
• Generic: VHDL’s term of a parameter that passes information to an entity
• Process: Basic unit of execution in VHDL

• All operations that are performed, broken into single or multiple processes
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VHDL Playground
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https://www.edaplayground.com/x/A4

https://www.edaplayground.com/x/A4
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Example
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.

.

.
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Questions?
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Additional material
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Assignment submission
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• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week

• Try to submit by following week’s Tuesday  

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/
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Assignment Week-3

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 32

• Use target device: xc7k160tfbg484-2 
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the 
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and 
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a
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Assignment Week-4
1. Do a matrix multiplication of two 1-dimensional arrays –

A[N]*B[N], where N > 5
a) Report synthesis results without any pragma directives
b) Add as many pragma directives possible

i. Report any conflicts (if reported in logs) between two pragmas

2. Compare the analysis perspective (Performance) for different 
case shared today

3. For Array_partitioning, instead of using complete, use block 
and cyclic with different factors
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Assignment Week-5
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1. Do exercise mention on slide-24
2. A matrix multiplication using two for loops and compare 

results for pragma loop_flatten & unroll
3. Write a simple program doing arithmetic operations(+, -, *, /, 

%) between two variable use of arbitrary precision to 
compare results between stand c/c++ data types and using 
ap_(u)int<N>

4. Write a program using an array with N(=10/15/20) elements 
and then restructure the code with a struct having N-data 
member. Compare the results of two programs
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Project
Write an algorithm to cluster ECAL and HCAL energies for 
Regional Calorimeter Trigger using HLS and synthesis the 
results
1. Input per tower (ECAL + HCAL)
2. Cluster ECAL energies for each tower
• Divide the RCT card further to make life simple

3. Stitch together the clusters for neighbouring towers
4. Sort the final list
5. Send just 12 towers per RCT region
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Jargons

May 2, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to 

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high 

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input
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