
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-4: Vivado HLS: Pragma’s effect on performance

Lecture-8: April 12th 2023

TA
C

-H
EP

 2
02

3

So Far…

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

• FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

• Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

• Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas

Today:
• Continue with Pragmas and their effects on performance

TA
C

-H
EP

 2
02

3

HLS Pragmas Effect [Ref]

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

Performance in term of Resource utilization and timing (latency)

https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html

TA
C

-H
EP

 2
02

3

Pragmas by type

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

Type Attributes

Kernel Optimization
pragma HLS allocation
pragma HLS expression_balance
pragma HLS latency

pragma HLS reset
pragma HLS resource
pragma HLS stable

Function Inlining pragma HLS inline
pragma HLS function_instantiate

Interface Synthesis pragma HLS interface

Task-level Pipeline pragma HLS dataflow
pragma HLS stream

Pipeline pragma HLS pipeline
pragma HLS occurrence

Loop Unrolling pragma HLS unroll
pragma HLS dependence

Loop Optimization pragma HLS loop_flatten
pragma HLS loop_merge pragma HLS loop_tripcount

Array Optimization pragma HLS array_map
pragma HLS array_partition

pragma HLS array_reshape

Structure Packing pragma HLS data_pack

https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html

TA
C

-H
EP

 2
02

3

Pragma HLS allocation

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

• Instance<list>*: Name of the function, operator, or cores

• limit=<value>*: Specifies the limit of instances to be used in kernel

• <type>*: Specifies the allocation applies to a function, an operator or a
core (hardware component) used to create the design (such as adder,
multiplier, BRAM)
• Function: allocation applies to the functions listed in the instances=
• Operation: applies to the operations listed in the instances=
• Core: applies to the cores

#pragma HLS allocation instances=<list> limit=<value> <type>

Kernel Optimization

TA
C

-H
EP

 2
02

3

Example

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

TA
C

-H
EP

 2
02

3

Pragma HLS allocation

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

WITHOUT PRAGMA WITH PRAGMA

#pragma HLS allocation instances=<list> limit=<value> <type>

TA
C

-H
EP

 2
02

3

Pragma HLS allocation

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

#pragma HLS allocation instances=<list> limit=<value> <type>

WITHOUT PRAGMA WITH PRAGMA

TA
C

-H
EP

 2
02

3

Pragma HLS Latency

• HLS always tries to minimize latency in the design

• When LATENCY pragma is specified
• Min < Latency < Max: Constraint is satisfied, No further optimization

• Latency < min: It extends latency to the specified value, potentially
increasing sharing

• Latency > max: Increases effort to achieve the constraints
• Still unsuccessful: issue a warning & produce design with the smallest

achievable latency in excess of maximum

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

#pragma HLS latency min=<int> max=<int>

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Latency

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

#pragma HLS latency min=4

TA
C

-H
EP

 2
02

3

Pragma HLS Latency

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

#pragma HLS latency min=4

WITHOUT HLS Latency PRAGMA WITH HLS Latency PRAGMA

TA
C

-H
EP

 2
02

3

Pragma HLS Latency

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

Not much change in the resources

WITHOUT HLS Latency PRAGMA WITH HLS Latency PRAGMA
#pragma HLS latency min=4

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow

• Enables task-level pipelining: allow functions and loops to overlap in their operation
• Increases the concurrency of the RTL implementation & thus the overall throughput

of the design
• In the absence of any directives that limit resources (like pragma HLS allocation), HLS

seeks to minimize latency & improve concurrency
• Data dependencies can limit this, hence proper dataflow is needed

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

Task-level pipeline

#pragma HLS dataflow

Without DATAFLOW pipelining With DATAFLOW pipelining

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

#pragma HLS dataflow

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

Without DATAFLOW pipelining With DATAFLOW pipelining

#pragma HLS dataflow

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

Without DATAFLOW pipelining With DATAFLOW pipelining
#pragma HLS dataflow

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

Without DATAFLOW pipelining With DATAFLOW pipelining
#pragma HLS dataflow

TA
C

-H
EP

 2
02

3

Pragma HLS Inline

• Removes a function as a separate entity in the hierarchy
• The function is dissolved into the calling function and no longer appears as a separate

level of hierarchy in RTL design
• May improve area by allowing the components within the function to be better shared

or optimized with the logic in the calling function

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

#pragma HLS inline <region | recursive | off>

• Region: Optionally, all functions (sub-functions) in the specified region are to be inlined

• Recursive: Inlines all functions recursively within the specified function or region
• By default, only one level of function inlining is performed

• Off: Disables function inlining to prevent specified functions from being inlined
• For example, HLS automatically inlines small functions & with the off option, automatic

inlining can be prevented

Function inlining

TA
C

-H
EP

 2
02

3

Pragma HLS Inline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

#pragma HLS inline

TA
C

-H
EP

 2
02

3

Pragma HLS Inline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

With HLS INLINE With HLS INLINE OFF

#pragma HLS inline off

TA
C

-H
EP

 2
02

3

Pragma HLS Inline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

With HLS INLINE With HLS INLINE OFF
#pragma HLS inline off

TA
C

-H
EP

 2
02

3

Pragma HLS Inline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

No change in the execution order

With HLS INLINE With HLS INLINE OFF
#pragma HLS inline off

TA
C

-H
EP

 2
02

3

Pragma HLS Pipeline

• The PIPELINE pragma reduces the II for a function or loop by allowing the concurrent
execution of operations

• A pipelined function or loop can process new inputs every <N> clock cycles
• If HLS can’t create a design with the specified II, it issues a warning and creates a design

with the lowest possible II

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

Without Loop pipelining With Loop pipelining

#pragma HLS pipeline II=<int>

Pipelining

TA
C

-H
EP

 2
02

3

Pragma HLS Pipeline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

#pragma HLS pipeline II=2With HLS PIPELINE II=2 With DATAFLOW pipelining

TA
C

-H
EP

 2
02

3

Pragma HLS Pipeline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

With HLS PIPELINE II=2 With DATAFLOW pipelining

#pragma HLS pipeline II=2

TA
C

-H
EP

 2
02

3

Pragma HLS Pipeline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

With HLS PIPELINE II=2 With DATAFLOW pipelining
#pragma HLS pipeline II=2

TA
C

-H
EP

 2
02

3

Pragma HLS Pipeline

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

#pragma HLS pipeline II=2
With HLS PIPELINE II=2 With DATAFLOW pipelining

TA
C

-H
EP

 2
02

3

Pragma HLS unroll

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

• Unroll loops to create multiple independent operations rather than a single collection of
operations

• UNROLL pragma transforms loops by creating multiples copies of the loop body in the RTL
design, which allows some or all loop iterations to occur in parallel

• Loops in the C/C++ functions are kept rolled by default
• When loops are rolled, synthesis creates the logic for one iteration of the loop, and

the RTL design executes this logic for each iteration of the loop in sequence

• UNROLL pragma allows the loop to be fully or partially unrolled
• Fully unrolling the loop creates a copy of the loop body in the RTL for each loop

iteration, so the entire loop can be run concurrently
• Partially unrolling a loop lets you specify a factor N

#pragma HLS unroll

TA
C

-H
EP

 2
02

3

Pragma HLS unroll

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

#pragma HLS unroll

TA
C

-H
EP

 2
02

3

Pragma HLS unroll

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

#pragma HLS unrollWithout UNROLL For-loop With UNROLL For-loop

TA
C

-H
EP

 2
02

3

Pragma HLS unroll

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

#pragma HLS unrollWithout UNROLL For-loop With UNROLL For-loop

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 32

Array optimization

Figure

• Cyclic: Cyclic partitioning creates smaller arrays by interleaving elements from the original array
• Block: Block partitioning creates smaller arrays from consecutive N-blocks of the original array
• Complete: Complete partitioning decomposes the array into individual elements

• For a 1-D array, this corresponds to resolving a memory into individual registers (default <type>)

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 33

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 34

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

Without Array partitioning With Array Partitioning

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 35

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

Without Array partitioning With Array Partitioning

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 36

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

Without Array partitioning With Array Partitioning

TA
C

-H
EP

 2
02

3

Combination of Pragmas

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 37

ARRAY Partitioning + UNROLLING For loop

TA
C

-H
EP

 2
02

3

For loop unrolling + Array Partitioning

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 38

#pragma HLS ARRAY_PARTITION variable=in complete dim=1
#pragma HLS ARRAY_PARTITION variable=out complete dim=1

#pragma HLS unroll

TA
C

-H
EP

 2
02

3

For loop unrolling + Array Partitioning

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 39

Without Pragma With Pragmas

TA
C

-H
EP

 2
02

3

For loop unrolling + Array Partitioning

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 40

Without Pragma With Pragmas

Is it a good optimization?

TA
C

-H
EP

 2
02

3

Summary
• Pragmas are important to implement a design in best possible

ways

• There are a lot of pragmas to help the design implementation

• Be careful with the choice of pragma’s to avoid conflicts

• Different pragma’s help improve different aspects of design or
performance parameters

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 41

TA
C

-H
EP

 2
02

3

Assignment Week-4
1. Do a matrix multiplication of two 1-dimensional arrays –

A[N]*B[N], where N > 5
a) Report synthesis results without any pragma directives
b) Add as many pragma directives possible

i. Report any conflicts (if reported in logs) between two pragmas

2. Compare the analysis perspective (Performance) for different
case shared today

3. For Array_partitioning, instead of using complete, use block
and cyclic with different factors

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 42

TA
C

-H
EP

 2
02

3

Questions?

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 43

TA
C

-H
EP

 2
02

3

Acknowledgement

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 44

Lectures are compiled using content from Xilinx’s public
pages or different user guides

TA
C

-H
EP

 2
02

3

Additional material

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 45

TA
C

-H
EP

 2
02

3

Assignment submission

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 46

• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week

• Try to submit by following week’s Tuesday

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

TA
C

-H
EP

 2
02

3

Correct Time

From 03.28.2023 onwards

• Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
• Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 47

TA
C

-H
EP

 2
02

3

Jargons

April 12, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 48

TA
C

-H
EP

 2
02

3

Reminder: Steps to follow
• Step-1: Creating a New Project/Opening an existing project

• Step-2: Validating the C-source code

• Step-3: High Level Synthesis

• Step-4: RTL Verification

• Step-5: IP Creation

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 49

TA
C

-H
EP

 2
02

3

Assignment Week-3

April 12, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 50

• Use target device: xc7k160tfbg484-2
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a

