
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-4: Vivado HLS: Pragmas & more examples

Lecture-7: April 11th 2023

TA
C

-H
EP

 2
02

3

So Far…

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

• FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

• Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

• Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas

Today:
• Continue with Pragmas with some examples

TA
C

-H
EP

 2
02

3

HLS Pragmas [Ref]

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html

TA
C

-H
EP

 2
02

3

Why are they needed?

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

TA
C

-H
EP

 2
02

3

Pragmas by type

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

Type Attributes

Kernel Optimization
pragma HLS allocation
pragma HLS expression_balance
pragma HLS latency

pragma HLS reset
pragma HLS resource
pragma HLS stable

Function Inlining pragma HLS inline
pragma HLS function_instantiate

Interface Synthesis pragma HLS interface

Task-level Pipeline pragma HLS dataflow
pragma HLS stream

Pipeline pragma HLS pipeline
pragma HLS occurrence

Loop Unrolling pragma HLS unroll
pragma HLS dependence

Loop Optimization pragma HLS loop_flatten
pragma HLS loop_merge pragma HLS loop_tripcount

Array Optimization pragma HLS array_map
pragma HLS array_partition

pragma HLS array_reshape

Structure Packing pragma HLS data_pack

https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html

TA
C

-H
EP

 2
02

3

Pragma HLS allocation

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

• Specifies instance restrictions to limit resource allocation in the implemented kernel
• Defines & can limit the number of RTL instances and hardware resources used to

implement specific functions, loops, operations or cores

• Example: c-source code has 4 instances of a function my_func
• ALLOCATION pragma can ensure that there is only one instance of of my_func
• All 4 instances are implemented using the same RTL block

• Reduces resource used by function but may impact performance

• Operations: additions, multiplications, array reads, & writes can be limited by
ALLOCATION pragma

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS allocation - Syntax

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

• Instance<list>*: Name of the function, operator, or cores

• limit=<value>*: Specifies the limit of instances to be used in kernel

• <type>*: Specifies the allocation applies to a function, an operator or a
core (hardware component) used to create the design (such as adder,
multiplier, BRAM)
• Function: allocation applies to the functions listed in the instances=
• Operation: applies to the operations listed in the instances=
• Core: applies to the cores

#pragma HLS allocation instances=<list> limit=<value> <type>

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS allocation - Example

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

#pragma HLS allocation instances=<list> limit=<value> <type>

Example1: Limits the number of instances of
my_func in the RTL for hardware kernel to 1

Example2: Limits the number of multiplier
operation used in the implementation of the
function my_func to 1
• Limit does NOT apply outside the function
• Alternatively, inline the sub-function can also

do similar job

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Latency

• Specifies a minimum or maximum latency value, or both, for the completion of
functions, loops, and regions
• min=<int>: minimum latency for the function, loop, or region of code
• max=<int>: maximum latency for the function, loop, or region of code

• Latency: # of CLK cycles required to produce an output

• Function latency: # of CLK cycles required for the function to computee all
output values and return

• Loop latency: # of CLK cycles to execute all iterations of the loop

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

#pragma HLS latency min=<int> max=<int>

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Latency

• HLS always tries to minimize latency in the design

• When LATENCY pragma is specified
• Min < Latency < Max: Constraint is satisfied, No further optimization

• Latency < min: It extends latency to the specified value, potentially
increasing sharing

• Latency > max: Increases effort to achieve the constraints
• Still unsuccessful: issue a warning & produce design with the smallest

achievable latency in excess of maximum

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

#pragma HLS latency min=<int> max=<int>

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Latency - Example

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

Example-1: Function foo is specified to have a
minimum latency of 4 and a maximum latency
of 8

Example-2: loop_1 is specified to have a
maximum latency of 12

Example-3: Creates a code region and groups
signals that need to change in the same clock
cycle by specifying zero latency

#pragma HLS latency min=<int> max=<int>

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Resource

• Specifies that a specific library resource (core) is used to implement a variable
(array, arithmetic operation, or function argument) in RTL
• If not specified: HLS determines for you
• Specially useful, when multiple cores in the library can implement the operation

• variable=<variable>*: Specifies the array, arithmetic operation, or function
argument to assign the RESOURCE pragma to

• core=<core>*: Specifies the core, as defined in the technology library

• latency=<int>: Specifies the latency of the core

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

#pragma HLS resource variable=<variable> core=<core> latency=<int>

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Resource - Example

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

Example-2:
• Two-stage pipelined multiplier is specified to

implement the multiplication for variable <c>
of the function foo

• The HLS tool selects the core to use for
variable <d>

Example-1:
• <coeffs[128]> variable is an argument to the

top-level function top
• Specifies that coeffs is implemented with

core RAM_1P from the library

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow

• Enables task-level pipelining: allow functions and loops to overlap in their operation
• Increases the concurrency of the RTL implementation & thus the overall throughput

of the design
• In the absence of any directives that limit resources (like pragma HLS allocation), HLS

seeks to minimize latency & improve concurrency
• Data dependencies can limit this, hence proper dataflow is needed

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

Task-level pipeline

Example:
• Functions/loops that access arrays must finish all read/write accesses to the arrays

before they complete
• Prevent the next function or loop that consumes the data from starting operation
• The DATAFLOW optimization enables the operations in a function or loop to start

operation before the previous function or loop completes all its operations

#pragma HLS dataflow

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow - Example

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

Without DATAFLOW pipelining With DATAFLOW pipelining

#pragma HLS dataflow

Task-level pipeline

For the DATAFLOW optimization to work, the data must flow through the design from one task to the next

✗ Bypassing tasks
✗ Feedback between tasks
✗ Conditional execution of tasks
✗ Loops with multiple exit

conditions

TA
C

-H
EP

 2
02

3

Pragma HLS Dataflow - Example

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

Without DATAFLOW pipelining With DATAFLOW pipelining

#pragma HLS dataflow

Task-level pipeline

For the DATAFLOW optimization to work, the data must flow through the design from one task to the next

✗ Bypassing tasks
✗ Feedback between tasks
✗ Conditional execution of tasks
✗ Loops with multiple exit

conditions

ü HLS tool issues a message and does not perform DATAFLOW optimization

ü Use the STABLE pragma to mark variables within DATAFLOW regions to be stable to
avoid concurrent read or write of variables.

ü No hierarchial implementation

TA
C

-H
EP

 2
02

3

Pragma HLS Stable

• The STABLE pragma marks variables within a DATAFLOW region as being stable
• Applies to both scalar and array variables whose content can be written/read by the

process inside the DATAFLOW region
• Eliminates the extra synchronization involved for DATAFLOW region

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

#pragma HLS stable variable=<name>

Example:
• Specifies the array A as stable
• If A is read by proc2, then it will not be written by

another process while the DATAFLOW region is being
executed

Kernel Optimization

TA
C

-H
EP

 2
02

3

Pragma HLS Inline

• Removes a function as a separate entity in the hierarchy
• The function is dissolved into the calling function and no longer appears as a separate

level of hierarchy in RTL design
• May improve area by allowing the components within the function to be better shared

or optimized with the logic in the calling function

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

#pragma HLS inline <region | recursive | off>

• Region: Optionally, all functions (sub-functions) in the specified region are to be inlined

• Recursive: Inlines all functions recursively within the specified function or region
• By default, only one level of function inlining is performed

• Off: Disables function inlining to prevent specified functions from being inlined
• For example, HLS automatically inlines small functions & with the off option, automatic

inlining can be prevented

Function inlining

TA
C

-H
EP

 2
02

3

Pragma HLS Inline - Example

• Inlines all functions within the body of foo_top

• Inlining recursively down through the function
hierarchy, except function foo_sub is not inlined.

• The recursive pragma is placed in function foo_top

• The pragma to disable inlining is placed in the
function foo_sub

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

#pragma HLS inline <region | recursive | off>

Function inlining

TA
C

-H
EP

 2
02

3

Pragma HLS Pipeline

• The PIPELINE pragma reduces the II for a function or loop by allowing the concurrent
execution of operations

• A pipelined function or loop can process new inputs every <N> clock cycles
• If HLS can’t create a design with the specified II, it issues a warning and creates a design

with the lowest possible II

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

Without Loop pipelining With Loop pipelining

#pragma HLS pipeline II=<int>

Pipelining

TA
C

-H
EP

 2
02

3

Pragma HLS array_map

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

#pragma HLS array_map variable=<name> instance=<instance> <mode> offset=<int>

variable=<name>: A required argument that specifies the array variable to be mapped
into the new target array <instance>

instance=<instance>: Specifies the name of the new array to merge arrays into.
• <mode>: Optionally specifies the array map as being either horizontal or vertical

offset=<int>: Applies to horizontal type array mapping only. The offset specifies an integer
value offset to apply before mapping the array into the new array <instance>. For
example:

• Element 0 of the array variable maps to element <int> of the new target
• Other elements map to <int+1>, <int+2>... of the new target.

Array optimization

TA
C

-H
EP

 2
02

3

Pragma HLS array_map: Horizontal

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

Figure

Array optimization

Horizontal mapping: Creating a new array
by concatenating the original arrays

Implemented as a single array with more
elements

#pragma HLS array_map variable=<name> instance=<instance> horizontal

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Pragma HLS array_map: Horizontal

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

Figure

Array optimization

The offset option to the ARRAY_MAP
directive is used to specify at which location
subsequent arrays are added when using
the horizontal option

#pragma HLS array_map variable=<name> instance=<instance> horizontal offset=2

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Pragma HLS array_map: Vertical

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

Array optimization

Vertical mapping: Arrays are concatenated
by to produce an array with higher bitwidths

#pragma HLS array_map variable=<name> instance=<instance> vertical

Figure

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

Array optimization

Figure

• Cyclic: Cyclic partitioning creates smaller arrays by interleaving elements from the original array
• Block: Block partitioning creates smaller arrays from consecutive N-blocks of the original array
• Complete: Complete partitioning decomposes the array into individual elements

• For a 1-D array, this corresponds to resolving a memory into individual registers (default <type>)

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Summary

• Pragmas are important to implement a design in best possible
ways

• There are a lot of pragmas to help the design implementation

• Be careful with the choice of pragma’s to avoid conflicts

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

TA
C

-H
EP

 2
02

3

Assignment Week-4
1. Do a matrix multiplication of two 1-dimensional arrays –

A[N]*B[N], where N > 5
a) Report synthesis results without any pragma directives
b) Add as many pragma directives possible

i. Report any conflicts (if reported in logs) between two pragmas

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

TA
C

-H
EP

 2
02

3

Questions?

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

TA
C

-H
EP

 2
02

3

Additional material

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

TA
C

-H
EP

 2
02

3

Assignment submission

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week

• Try to submit by following week’s Tuesday

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

TA
C

-H
EP

 2
02

3

Correct Time

From 03.28.2023 onwards

• Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
• Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

TA
C

-H
EP

 2
02

3

Jargons

April 11, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 32

TA
C

-H
EP

 2
02

3

Reminder: Steps to follow
• Step-1: Creating a New Project/Opening an existing project

• Step-2: Validating the C-source code

• Step-3: High Level Synthesis

• Step-4: RTL Verification

• Step-5: IP Creation

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 33

TA
C

-H
EP

 2
02

3

Assignment Week-3

April 11, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 34

• Use target device: xc7k160tfbg484-2
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a

