
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-2: FPGA: Clock Frequency, Latency, Pipelining

Lecture-3: March 28th 2023

TA
C

-H
EP

 2
02

3

So Far…

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

• FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs

• Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

Today:
• FPGA: Clock Frequency, Latency, Pipelining
• Extracting Control Logic & Implementating I/O Ports
• Vivado HLS introduction

TA
C

-H
EP

 2
02

3

Clock Frequency

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

• Important metric to determine the choice of processor
• In general: High clock frequency means higher performance execution rate

• Can be misleading

Stages Description
IF Instructions Fetch Get the instruction from program memory
ID Instruction decode Decode the instruction to determine the operation and the operators

EXE Execute Execute the instruction on the available hardware

MEM Memory Operation Fetch data for the next instruction using memory operations
WB Write Back Write the results of the instruction to local registers/global memory

FPGA 500 MHz
Processor 2 GHz

Which is better?

Regardless of processor type: Execution instructions

Maximum clock frequency:

Fig. 1

TA
C

-H
EP

 2
02

3

Clock Frequency

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

• A processor is able to execute any program on a common hardware platform
• The compiler, which has a built-in understanding of the processor architecture,

compiles the user software into a set of instructions

FPGA 500 MHz
Processor 2 GHz

4 times better?

IF ID EXE MEM WB
0 1 2 3 4

time

Processor instruction execution stages

Fig. 2

Fig. 3

TA
C

-H
EP

 2
02

3

Clock Frequency: FPGA

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

EXE
0 1 2 3 4

time

• FPGA does not execute all software on a common computation platform.
• BUT executes on custom circuit for that program

• Therefore, any modification to program changes the circuit in the FPGA.

• Vivado HLS compiler does not need to account for overhead stages in the platform
• Can find ways of maximizing instruction parallelism.

Fig. 4

TA
C

-H
EP

 2
02

3

Clock Frequency

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

0 1 2 3 4 5 6 7 8

time
Multiple instruction execution stages

EXE

EXE

EXE

EXE

0 1 2 3 4

time

< 9x faster

FPGAProcessor

FPGAs generally demonstrate at least 10x the performance

Approximate Power consumption = !
"

cF.V2

FPGA is able to run at a lower clock frequency with maximum parallelism
• Thus lower power for same computational workload

Fig. 5 Fig. 6

TA
C

-H
EP

 2
02

3

Latency and Pipelining

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

Latency: number of clock cycles it takes to complete an instruction or set of
instructions to generate an application result value

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

0 1 2 3 4 5 6 7 8

time

Latency: 5 clk cyc
For 5 set of instructions: 25 clk cycles

Latency is another important key performance metric

Latency can be improved via pipelining

IF ID EXE MEM WB
0 1 2 3 4

time

Latency: 5 clk cyc
For 5 set of instructions with pipelining
9 clk cycles

Fig. 7

Fig. 8

TA
C

-H
EP

 2
02

3

Latency and Pipelining

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

EXE

EXE

EXE

EXE

0 1 2 3 4

time

Parallelism also plays an important role in reducing latency

5 set of instructions
FPGA latency: 1 clock cycle

Do we need pipelining in One clock cycle latency of the FPGA?
• The reason for pipelining in an FPGA is to improve application performance

Fig. 9

TA
C

-H
EP

 2
02

3

Latency and Pipelining

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

Reminder: FPGA is a blank slate with building blocks that must be connected to implement an application

Operation time

Example:
• Each block takes 2 ns to execute
• Current design (5 stages of implementation): 10 ns
• Latency: 1 clock cycle
• Clock frequency: !

× " %&
= !
!' %&

=100 MHz

2ns 2ns 2ns 2ns 2ns

Clock Frequency: longest signal travel time between source and sink registers

FPGA implementation
without pipeliningFig. 10

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Latency and Pipelining
Technique to avoid data dependencies and increase the level of parallelism
• Pipelining in an FPGA is the process of inserting more registers to break up

large computation blocks into smaller segments.

• Partitioning of the computation increases the latency in absolute number of
clock cycles but increases performance by allowing the custom circuit to run
at a higher clock frequency

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

FPGA implementation
with pipelining

Operation
time

Fig. 11

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Latency and Pipelining

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

• Addition of registers reduces the timing requirement of the circuit from 10 ns to 2 ns,
• Results in a maximum clock frequency of 500 MHz.

• In addition, by separating the computation into separate register-bounded regions,
each block is allowed to always be busy, which positively impacts the application
throughput

FPGA implementation
with pipelining

Operation
time

The latency caused by pipelining is one of the trade-offs to consider during FPGA design

Fig. 12

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Throughput
• Another another metric used to determine overall performance of an implementation

• Number of clock cycles it takes for the processing logic to accept the next input data
sample

• Throughput changes with clock frequency

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

10 ns between input samples 2 ns between input samples

Second implementation has higher performance, because it can accept a higher
input data rate

Fig. 13 Fig. 14

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Control Logic & Implementation

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

TA
C

-H
EP

 2
02

3

Reminder from Last week

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

E.g.: Scheduling phases for a simple code

First cycle: Multiplication and the first
addition
Second cycle: Second addition and
output generation

Internal register storing a variable

First cycle: reads x, a, and b data ports
Second cycle: reads data port c &
generates output y

Fig. 15

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Extracting control logic & Implementing I/O

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

Fig. 16

Let’s talk about a slightly more complex example:
• Same operation inside a for-loop and two of function arguments as arrays

• Resulting design executes logic inside the for-loop 3-times when code is scheduled
• HLS extracts the control logic from the C code & creates FSM in the RTL design to sequence

these operations.
• HLS implements the top-level function arguments as ports in the final RTL design

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Extracting control logic & Implementing I/O

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

• Scalar variable of type char maps into a standard 8-bit data bus port
• Array arguments, such as in and out, contain an entire collection of data

Fig. 17

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Extracting control logic & Implementing I/O
• In HLS, arrays are synthesized into BRAM by default

• Other possible options: FIFOs, distributed RAM, and individual registers

• Arrays as arguments in the top-level function: HLS assumes BRAM to be outside the
top-level function
• Creates ports to access a BRAM outside the design, such as data ports, address ports,

and any required chip-enable or write-enable signals.

• The FSM controls when the registers store data and controls the state of any I/O
control signals.

• The FSM starts in the state C0. On the next clock, it enters state C1, then state C2, and
then state C3.
• Returns to state C1 (and C2, C3) a total of three times before returning to state C0

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

TA
C

-H
EP

 2
02

3

Extracting control logic & Implementing I/O

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

C0
• Design requires the addition of b and c only one time
• HLS moves the addition operation outside the for-loop and into state C0
• Reuses the results of addition, each time the design enters state C3

Fig. 18

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Extracting control logic & Implementing I/O

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

C1:
• The FSM generates the address for the first element in state C1
• An adder increments to keep track of how many times the design must iterate around

states C1, C2, and C3

Fig. 19

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Extracting control logic & Implementing I/O

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

C2: BRAM returns the data for in and stores it as variable x

Fig. 20

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Extracting control logic & Implementing I/O

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

C3: Multiplication, addition and writes data back

Fig. 21

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Latency & Initiation Interval

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

Complete cycle-by-cycle execution for the code, including the states for each clock
cycle, read operations, computation operations, and write operations

Fig. 22

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Latency & Initiation Interval

• Latency: Function takes 9 clock cycles to output all values
• When the output is an array: the latency is measured to the last array value output

• Initiation Interval (II): 10, i.e., it takes 10 clock cycles before the function can initiate a new
set of input reads and start to process the next set of input data

• Loop iteration latency: The latency of each loop iteration is 3 clock cycles
• Loop II: The interval is 3.
• Loop latency: The latency is 9 clock cycles

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

Fig. 23

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Vivado HLS

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

TA
C

-H
EP

 2
02

3

Vivado HLS
• The Xilinx Vivado HLS tool synthesizes a C function into an IP block that you can integrate

into a hardware system
• Tightly integrated with the rest of the Xilinx design tools and provides comprehensive

language support and features for creating the optimal implementation for your C
algorithm

• Following is the Vivado HLS design flow:
1.Compile, execute (simulate), and debug the C algorithm
2.Synthesize the C algorithm into an RTL implementation, optionally using user

optimization directives
3.Generate comprehensive reports and analyze the design
4.Verify the RTL implementation using a pushbutton flow
5.Package the RTL implementation into a selection of IP formats

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

C-Simulation

TA
C

-H
EP

 2
02

3

Vivado HLS Design Flow

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

Fig. 24

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

HLS Setup

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

• Xilinx Vivado HLS has a graphical user interface that we intend to use
• The goal is to run vivado_hls on cmstrigger02 machine but be able to do so remotely
• So, we want to display the cmstrigger02 screen on your desktop (Mac or Windows or Linux)
• In principle one can use X-Windows directly. However, that will be very slow over WAN
• Therefore, we suggest using a VNC server on cmstrigger02 and a remote machine

TA
C

-H
EP

 2
02

3

Connecting to cmstrigger02

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

• Connect to login machine:
• ssh -X -Y <username>@login.hep.wisc.edu

• From 'login' machine connect to 'cmstrigger02' machine - All of you should have
access
• ssh cmstrigger02
• mkdir /nfs_scratch/`whoami` (If directory exist, go to next bullet)
• cd /nfs_scratch/`whoami`

TA
C

-H
EP

 2
02

3

VNC Server setup
• Log into cmstrigger02
• Set your VNC password using the linux command: vncpasswd

• Do NOT use an important password here, as it is NOT secure

• Follow this instruction at http://red.ht/1fSVIUc to set up your X-Windows session
• Namely, you need to create a file ~/.vnc/xstartup with content:

• You need to set execute permission for the startup file
• chmod +x ~/.vnc/xstartup

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

#!/bin/sh
Uncomment the following two lines for normal desktop:
unset SESSION_MANAGER
exec /etc/X11/xinit/xinitrc
[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
#xsetroot -solid grey
#vncconfig -iconic &
#xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
#twm &
if test -z "$DBUS_SESSION_BUS_ADDRESS" ; then

eval `dbus-launch --sh-syntax ?exit-with-session`
echo "D-BUS per-session daemon address is: \
$DBUS_SESSION_BUS_ADDRESS"

fi
exec gnome-session

Can be copied from above link as well

One time only

http://red.ht/1fSVIUc

TA
C

-H
EP

 2
02

3

Setting direct tunnelling
• Add to your (laptop or computer) ~/.ssh/config

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

One time only

Host *
ControlPath ~/.ssh/control/%C
ControlMaster auto

Host cmstrigger02-via-login
User varuns
HostName cmstrigger02.hep.wisc.edu
ProxyCommand ssh login.hep.wisc.edu nc %h %p

Host *.wisc.edu
User varuns

Replace “varuns” with
your <username>

• If all is done correctly, following command should directly take you to cmstrigger02
machine (enter passwd twice)
• ssh cmstrigger02-via-login

TA
C

-H
EP

 2
02

3

IP Port forwarding

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

• Start the VNC server - you do this command after you stopped vncserver by hand or otherwise, using:
• vncserver -localhost -geometry 1024x768

• This command, vncserver, tells you the number of your X-Windows Display, example
cmstrigger02.hep.wisc.edu:1, where :1 is your display

• We use an IP forwarding tunnel to cmstrigger02.hep.wisc.edu to see your cmstrigger02 display on your
laptop/desktop. The command to make that magic is:
• ssh varuns@cmstrigger02-via-login -L5901:localhost:5901
• Make sure you change ”varuns" to your user name, and "5901" to (5900 + your display number),

say 5903, if vncserver told you 3!

• You can kill your VNC server (:3) using the command:
• vncserver -kill :1

TA
C

-H
EP

 2
02

3

Remote desktop client
• Download VNC viewer:

https://www.realvnc.com/en/connect/download/viewer/
• You can choose any other remote desktop client but this is one of the stable

one that I have used

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 32

One time only

Use password set using vncpasswd command

https://www.realvnc.com/en/connect/download/viewer/

TA
C

-H
EP

 2
02

3

Connected…

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 33

TA
C

-H
EP

 2
02

3

All set for hands-on

Summary

• ssh varuns@cmstrigger02-via-login -L5901:localhost:5901
• Or whatever :1 display number
• Sometimes you may need to run vncserver -

localhost -geometry 1024x768 again to start new vnc
server

• Connect to VNC server (remote desktop) client
• Open terminal
• Source /opt/Xilinx/Vivado/2020.1/settings64.sh
• vivado_hls

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 34

Everytime

Homework: You are able to connect and bring this screen
Let me know in case of any issue

TA
C

-H
EP

 2
02

3

Questions?

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 35

TA
C

-H
EP

 2
02

3

Additional material

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 36

TA
C

-H
EP

 2
02

3

Correct Time

From 03.28.2023 onwards

• Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
• Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 37

TA
C

-H
EP

 2
02

3

Jargons

March 28, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 38

