
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-9

Lecture-17: 27/03/2025

TA
C

-H
E
P

 2
0

2
5

Content

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

So far
• HLS Pragmas:
• Interface
• Array Partition

• Array reshape
• Pipeline
• Dataflow
• Latency
• Allocation

Today
• HLS Pragmas:
• Stable
• Inline

• Unroll

2

TA
C

-H
E
P

 2
0

2
5

Example: Box blur operation

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

#include "example.h"

void read_data(din9_t in_r[N], din9_t out_r[N]) {
 for (size_t i = 0; i < N; i++) {

 out_r[i] = in_r[i]; // Simple pass through

}}

void compute_blur(din9_t in_c[N], din9_t out_c[N]) {

 for (size_t i = 1; i < N - 1; i++) {

 out_c[i] = (in_c[i - 1] + in_c[i] + in_c[i + 1]) / 3; // Box blur operation

}}

void write_data(din9_t in_w[N], din9_t out_w[N]) {

 for (size_t i = 0; i < N; i++) {

 out_w[i] = in_w[i]; // Simple pass-through

}}

void example(din9_t A[N], din9_t B[N]) {
 din9_t temp1[N], temp2[N];

 for (size_t i = 0; i < N; i++)

 temp2[i]=0;

 read_data(A, temp1);
 compute_blur(temp1, temp2);

 write_data(temp2, B);

}

3

TA
C

-H
E
P

 2
0

2
5

Example: Resource

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 4

TA
C

-H
E
P

 2
0

2
5

Example: Resource

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 5

TA
C

-H
E
P

 2
0

2
5

Lets implement some pragmas

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

#include "example.h"

void read_data(din9_t in_r[N], din9_t out_r[N]) {
 for (size_t i = 0; i < N; i++) {

 out_r[i] = in_r[i]; // Simple pass through

}}

void compute_blur(din9_t in_c[N], din9_t out_c[N]) {

 for (size_t i = 1; i < N - 1; i++) {

 out_c[i] = (in_c[i - 1] + in_c[i] + in_c[i + 1]) / 3; // Box blur operation

}}

void write_data(din9_t in_w[N], din9_t out_w[N]) {

 for (size_t i = 0; i < N; i++) {

 out_w[i] = in_w[i]; // Simple pass-through

}}

void example(din9_t A[N], din9_t B[N]) {
 din9_t temp1[N], temp2[N];

 for (size_t i = 0; i < N; i++)

 temp2[i]=0;

 read_data(A, temp1);
 compute_blur(temp1, temp2);

 write_data(temp2, B);

}

What all pragmas and
optimization can we
do with this code?

6

TA
C

-H
E
P

 2
0

2
5

Example: with Pragmas

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

#include "example.h"

void read_data(din9_t in_r[N], din9_t out_r[N]) {
#pragma HLS PIPELINE II=2
#pragma HLS ARRAY_PARTITION variable=out_r cyclic factor=2
 for (size_t i = 0; i < N; i++) {

 out_r[i] = in_r[i]; // Simple pass through
}}

void compute_blur(din9_t in_c[N], din9_t out_c[N]) {

#pragma HLS PIPELINE II=2
#pragma HLS LATENCY min=4 max=8
#pragma HLS ALLOCATION instances=mul limit=1 function
#pragma HLS ARRAY_PARTITION variable=in_c cyclic factor=2
#pragma HLS ARRAY_PARTITION variable=out_c cyclic factor=2

 for (size_t i = 1; i < N - 1; i++) {
 out_c[i] = (in_c[i - 1] + in_c[i] + in_c[i + 1]) / 3; // Box blur operation
}}

void write_data(din9_t in_w[N], din9_t out_w[N]) {

#pragma HLS PIPELINE II=2
#pragma HLS ARRAY_PARTITION variable=in_w cyclic factor=2
 for (size_t i = 0; i < N; i++) {
 out_w[i] = in_w[i]; // Simple pass-through
}}

void example(din9_t A[N], din9_t B[N]) {
#pragma HLS DATAFLOW
 din9_t temp1[N], temp2[N];
 for (size_t i = 0; i < N; i++)
 temp2[i]=0;

 read_data(A, temp1);
 compute_blur(temp1, temp2);
 write_data(temp2, B);
}

7

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Stable

• The STABLE pragma marks variables within a DATAFLOW region as being stable

• Applies to both scalar and array variables whose content can be written/read by the
process inside the DATAFLOW region

• Eliminates the extra synchronization involved for DATAFLOW region

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

#pragma HLS stable variable=<name>

Example:
• Specifies the array A as stable
• If A is read by proc2, then it will not be written by

another process while the DATAFLOW region is being
executed

Kernel Optimization

8

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Inline

• Removes a function as a separate entity in the hierarchy

• The function is dissolved into the calling function and no longer appears as a separate
level of hierarchy in RTL design

• May improve area by allowing the components within the function to be better shared
or optimized with the logic in the calling function

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

#pragma HLS inline <recursive | off>

o INLINE
• Without arguments, the function it is specified in should be inlined upward into any calling functions

o Recursive: Inlines all functions recursively within the specified function or region
• By default, only one level of function inlining is performed

o Off: Disables function inlining to prevent specified functions from being inlined
• For example, HLS automatically inlines small functions & with the off option, automatic

inlining can be prevented

Function inlining

9

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Inline - Example

• Inlines all functions within the body of foo_top

• Inlining recursively down through the function
hierarchy, except function foo_sub is not inlined.

• The recursive pragma is placed in function foo_top

• The pragma to disable inlining is placed in the
function foo_sub

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

Function inlining

#pragma HLS inline <recursive | off>

10

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Inline

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

#pragma HLS inline <recursive | off>
#include "example.h"

void example (unsigned int in[N], short a, short b, unsigned int c, unsigned int out[N]) {

 unsigned int x, y;

 unsigned int tmp1, tmp2, tmp3;

for_Loop: for (unsigned int i=0 ; i < N; i++) {

 x = in[i];

 tmp1 = func(1, 2);

 tmp2 = func(2, 3);

 tmp3 = func(1, 4);

 y = a*x + b + squared(c) + tmp1 + tmp2 + tmp3;

 out[i] = y;

}}

unsigned int squared(unsigned int a){

#pragma HLS INLINE OFF

 unsigned int res = 0;

 res = a*a;

 return res;

}

unsigned int func(short a, short b){

#pragma HLS INLINE OFF

 unsigned int res;

 res= a*a;

 res= res*b*a;

 res= res + 3;

 return res;

}

11

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Inline

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

With HLS INLINE With HLS INLINE OFF

#pragma HLS inline OFF

12

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Inline

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

With HLS INLINE With HLS INLINE OFF

#pragma HLS inline off

13

TA
C

-H
E
P

 2
0

2
5

Pragma HLS unroll

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

• Unroll loops to create multiple independent operations rather than a single collection of
operations

• UNROLL pragma transforms loops by creating multiples copies of the loop body in the RTL
design, which allows some or all loop iterations to occur in parallel

• Loops in the C/C++ functions are kept rolled by default

• When loops are rolled, synthesis creates the logic for one iteration of the loop, and
the RTL design executes this logic for each iteration of the loop in sequence

• UNROLL pragma allows the loop to be fully or partially unrolled

• Fully unrolling the loop creates a copy of the loop body in the RTL for each loop
iteration, so the entire loop can be run concurrently

• Partially unrolling a loop lets you specify a factor N

14

TA
C

-H
E
P

 2
0

2
5

Pragma HLS unroll

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

factor=<N>: Specifies a non-zero integer indicating that partial unrolling is requested.
• If factor= is not specified, the loop is fully unrolled.

skip_exit_check: An optional keyword that applies only if partial unrolling is specified with factor=
• Fixed (known) bounds: No exit condition check is performed if the iteration count is a multiple of

the factor. If the iteration count is not an integer multiple of the factor, the tool:

• Prevents unrolling.

• Issues a warning that the exit check must be performed to proceed.

• Variable (unknown) bounds: The exit condition check is removed as requested. You must ensure
that:

• The variable bounds is an integer multiple of the specified unroll factor.

• No exit check is in fact require

#pragma HLS unroll factor=<N> skip_exit_check off=true

15

TA
C

-H
E
P

 2
0

2
5

Ex: Pragma HLS unroll

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

The following example fully unrolls loop_1 in function foo

Place the pragma in the body of loop_1 as shown:

This example specifies an unroll factor of 4 to partially

unroll loop_2 of function foo, and removes the exit

check:

16

#pragma HLS unroll factor=<N> skip_exit_check off=true

TA
C

-H
E
P

 2
0

2
5

Assignment-6

• Use example in slide-3 to reduce resource utilization – specially
the DSP usage (https://github.com/varuns23/TAC-HEP-
FPGA/tree/main/tutorial/wk9lec17/ex-func)
• You can use a combination of sub-set of following pragmas:

• Array Partition
• Array reshape
• Pipeline
• Dataflow
• Latency
• Allocation
• INLINE

• Objective: To have DSP usage less than 10

• Refer to ex-all folder for example with pragmas

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 17

https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func
https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func

TA
C

-H
E
P

 2
0

2
5

Reminder: Assignments
• Assignment-1 (13-02-2025)

• Assignment-2 (18-02-2025)

• Assignment-3 (27-02-2025)

• Assignment-4 (18-03-2025)

• Assignment-5 (18-03-2025)

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

Submit in 2 weeks from date of assignment

Send via email: varun.sharma@cern.ch

18

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

TA
C

-H
E
P
 2

0
2

5

Questions?

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

Acknowledgements:

- https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

- ug871-vivado-high-level-synthesis-tutorial.pdf

19

https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

TA
C

-H
E
P

 2
0

2
5

List of Available Pragmas

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 20

TA
C

-H
E
P

 2
0

2
5

Reminder: HLS Setup

• ssh <username>@cmstrigger02-via-login -L5901:localhost:5901

• Or whatever :1 display number

• Sometimes you may need to run vncserver -localhost -geometry
1024x768 again to start new vnc server

• Connect to VNC server (remote desktop) client

• Open terminal

• source /opt/Xilinx/Vivado/2020.1/settings64.sh

• cd /scratch/`whoami`

• vivado_hls

• Source /opt/Xilinx/Vitis/2020.1/settings64.sh

• Cd /scratch/`whoami`

• vitis_hls

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma

OR

21

TA
C

-H
E
P

 2
0

2
5

Jargons

March 27, 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 22

TA
C

-H
E
P

 2
0

2
5

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 30

	Slide 1
	Slide 2: Content
	Slide 3: Example: Box blur operation
	Slide 4: Example: Resource
	Slide 5: Example: Resource
	Slide 6: Lets implement some pragmas
	Slide 7: Example: with Pragmas
	Slide 8: Pragma HLS Stable
	Slide 9: Pragma HLS Inline
	Slide 10: Pragma HLS Inline - Example
	Slide 11: Pragma HLS Inline
	Slide 12: Pragma HLS Inline
	Slide 13: Pragma HLS Inline
	Slide 14: Pragma HLS unroll
	Slide 15: Pragma HLS unroll
	Slide 16: Ex: Pragma HLS unroll
	Slide 17: Assignment-6
	Slide 18: Reminder: Assignments
	Slide 19: Questions?
	Slide 20: List of Available Pragmas
	Slide 21: Reminder: HLS Setup
	Slide 22: Jargons
	Slide 30

