
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-9

Lecture-16: 25/03/2025

TA
C

-H
E
P

 2
0

2
5

Content

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 2

Today
• HLS Pragmas:
• Dataflow
• Latency

• Allocation

So far
• HLS Pragmas:
• Interface
• Array Partition

• Array reshape
• Pipeline

TA
C

-H
E
P
 2

0
2

5

#pragma HLS Pipeline

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 3

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-pipeline

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-pipeline

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Pipeline

• The PIPELINE pragma reduces the initiation interval (II) for a function or loop by allowing
the concurrent execution of operations

• A pipelined function or loop can process new inputs every <N> clock cycles

• If HLS can’t create a design with the specified II, it issues a warning and creates a design
with the lowest possible II

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 4

Without Loop pipelining With Loop pipelining

#pragma HLS pipeline II=<int>

Pipelining

TA
C

-H
E
P
 2

0
2

5

#pragma HLS Dataflow

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 5

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-dataflow

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-dataflow

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Dataflow

• Enables task-level pipelining: allow functions and loops to overlap in their operation

• Increases the concurrency of the RTL implementation & thus the overall throughput
of the design

• In the absence of any directives that limit resources (like pragma HLS allocation), HLS
seeks to minimize latency & improve concurrency

• Data dependencies can limit this, hence proper dataflow is needed

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 6

Task-level pipeline

#pragma HLS dataflow

Without DATAFLOW pipelining With DATAFLOW pipelining

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Dataflow

• Enables task-level pipelining: allow functions and loops to overlap in their operation

• Increases the concurrency of the RTL implementation & thus the overall throughput
of the design

• In the absence of any directives that limit resources (like pragma HLS allocation), HLS
seeks to minimize latency & improve concurrency

• Data dependencies can limit this, hence proper dataflow is needed

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 7

Task-level pipeline

Example:
• Functions/loops that access arrays must finish all read/write accesses to the arrays

before they complete
• Prevent the next function or loop that consumes the data from starting operation
• The DATAFLOW optimization enables the operations in a function or loop to start

operation before the previous function or loop completes all its operations

#pragma HLS dataflow

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Dataflow

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 8

Without DATAFLOW pipelining With DATAFLOW pipelining

#pragma HLS dataflow

Task-level pipeline

✗Bypassing tasks

✗Feedback between tasks
✗Conditional execution of tasks

✗Loops with multiple exit conditions

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Dataflow - Example

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 9

Without DATAFLOW pipelining With DATAFLOW pipelining

#pragma HLS dataflow

Task-level pipeline

For the DATAFLOW optimization to work, the data must flow through the design from one task to the next✓ HLS tool issues a message and does not perform DATAFLOW optimization

✓ Use the STABLE pragma to mark variables within DATAFLOW regions to be stable to
avoid concurrent read or write of variables.

✓ No hierarchial implementation

✗Bypassing tasks

✗Feedback between tasks
✗Conditional execution of tasks

✗Loops with multiple exit conditions

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Dataflow - Example

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 10

#pragma HLS dataflow

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Dataflow

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 11

Without DATAFLOW pipelining With DATAFLOW pipelining

#pragma HLS dataflow

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Dataflow

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 12

Without DATAFLOW pipelining With DATAFLOW pipelining
#pragma HLS dataflow

TA
C

-H
E
P

 2
0

2
5

Pragma HLS allocation

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 13

• Specifies instance restrictions to limit resource allocation in the implemented kernel

• Defines & can limit the number of RTL instances and hardware resources used to
implement specific functions, loops, operations or cores

• Example: c-source code has 4 instances of a function my_func

• ALLOCATION pragma can ensure that there is only one instance of of my_func

• All 4 instances are implemented using the same RTL block

• Reduces resource used by function but may impact performance

• Operations: additions, multiplications, array reads, & writes can be limited by
ALLOCATION pragma

Kernel Optimization

TA
C

-H
E
P

 2
0

2
5

Pragma HLS allocation - Syntax

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 14

• Instance<list>*: Name of the function, operator, or cores

• limit=<value>*: Specifies the limit of instances to be used in kernel

• <type>*: Specifies the allocation applies to a function, an operator or a
core (hardware component) used to create the design (such as adder,
multiplier, BRAM)

• Function: allocation applies to the functions listed in the instances=

• Operation: applies to the operations listed in the instances=

• Core: applies to the cores

Kernel Optimization

#pragma HLS allocation instances=<list> limit=<value> <type>

TA
C

-H
E
P

 2
0

2
5

Pragma HLS allocation - Example

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 15

Example1: Limits the number of instances of
my_func in the RTL for hardware kernel to 1

Example2: Limits the number of multiplier
operation used in the implementation of the
function my_func to 1
• Limit does NOT apply outside the function
• Alternatively, inline the sub-function can also

do similar job

Kernel Optimization

#pragma HLS allocation instances=<list> limit=<value> <type>

TA
C

-H
E
P

 2
0

2
5

Example

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 16

#pragma HLS allocation instances=<list> limit=<value> <type>

TA
C

-H
E
P

 2
0

2
5

Pragma HLS allocation

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 17

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Latency

• Specifies a minimum or maximum latency value, or both, for the completion of
functions, loops, and regions

• min=<int>: minimum latency for the function, loop, or region of code

• max=<int>: maximum latency for the function, loop, or region of code

• Latency: # of CLK cycles required to produce an output

• Function latency: # of CLK cycles required for the function to compute all
output values and return

• Loop latency: # of CLK cycles to execute all iterations of the loop

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 18

#pragma HLS latency min=<int> max=<int>

Kernel Optimization

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Latency

• HLS always tries to minimize latency in the design

• When LATENCY pragma is specified

• Min < Latency < Max: Constraint is satisfied, No further optimization

• Latency < min: It extends latency to the specified value, potentially
increasing sharing

• Latency > max: Increases effort to achieve the constraints

• Still unsuccessful: issue a warning & produce design with the smallest
achievable latency in excess of maximum

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 19

Kernel Optimization

#pragma HLS latency min=<int> max=<int>

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Latency - Example

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 20

Example-1: Function foo is specified to have a
minimum latency of 4 and a maximum latency
of 8

Example-2: loop_1 is specified to have a
maximum latency of 12

Example-3: Creates a code region and groups
signals that need to change in the same clock
cycle by specifying zero latency

Kernel Optimization

#pragma HLS latency min=<int> max=<int>

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Latency - Example

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 21

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Latency - Results

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 22

TA
C

-H
E
P

 2
0

2
5

Reminder: Assignments
• Assignment-1 (13-02-2025)

• Assignment-2 (18-02-2025)

• Assignment-3 (27-02-2025)

• Assignment-4 (18-03-2025)

• Assignment-5 (18-03-2025)

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 23

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

Submit in 2 weeks from date of assignment

Send via email: varun.sharma@cern.ch

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

TA
C

-H
E
P
 2

0
2

5

Questions?

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 24

Acknowledgements:

- https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

- ug871-vivado-high-level-synthesis-tutorial.pdf

https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

TA
C

-H
E
P

 2
0

2
5

List of Available Pragmas

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 25

TA
C

-H
E
P

 2
0

2
5

Reminder: HLS Setup

• ssh <username>@cmstrigger02-via-login -L5901:localhost:5901

• Or whatever :1 display number

• Sometimes you may need to run vncserver -localhost -geometry
1024x768 again to start new vnc server

• Connect to VNC server (remote desktop) client

• Open terminal

• source /opt/Xilinx/Vivado/2020.1/settings64.sh

• cd /scratch/`whoami`

• vivado_hls

• Source /opt/Xilinx/Vitis/2020.1/settings64.sh

• Cd /scratch/`whoami`

• vitis_hls

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 26

OR

TA
C

-H
E
P

 2
0

2
5

Jargons

March 27, 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 27

TA
C

-H
E
P

 2
0

2
5

March 27, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 48

	Slide 1
	Slide 2: Content
	Slide 3: #pragma HLS Pipeline
	Slide 4: Pragma HLS Pipeline
	Slide 5: #pragma HLS Dataflow
	Slide 6: Pragma HLS Dataflow
	Slide 7: Pragma HLS Dataflow
	Slide 8: Pragma HLS Dataflow
	Slide 9: Pragma HLS Dataflow - Example
	Slide 10: Pragma HLS Dataflow - Example
	Slide 11: Pragma HLS Dataflow
	Slide 12: Pragma HLS Dataflow
	Slide 13: Pragma HLS allocation
	Slide 14: Pragma HLS allocation - Syntax
	Slide 15: Pragma HLS allocation - Example
	Slide 16: Example
	Slide 17: Pragma HLS allocation
	Slide 18: Pragma HLS Latency
	Slide 19: Pragma HLS Latency
	Slide 20: Pragma HLS Latency - Example
	Slide 21: Pragma HLS Latency - Example
	Slide 22: Pragma HLS Latency - Results
	Slide 23: Reminder: Assignments
	Slide 24: Questions?
	Slide 25: List of Available Pragmas
	Slide 26: Reminder: HLS Setup
	Slide 27: Jargons
	Slide 48

