
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-6

Lecture-12: 06/03/2025

TA
C

-H
E
P

 2
0

2
5

Content

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 2

• Vivado/Vitis HLS Setup
• Data types
• HLS Pragmas

TA
C

-H
E
P
 2

0
2

5

Data Types

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 3

TA
C

-H
E
P

 2
0

2
5

Data Types
• Data types used in a C/C++ function impact the accuracy of the result and the memory

requirements, and can impact the performance

• A 32-bit integer int data type can hold more data and therefore provide more precision
than an 8-bit char type, but it requires more storage.

• Similarly, when the C/C++ function is to be synthesized to an RTL implementation, the
types impact the precision, the area, and the performance of the RTL design

• HLS supports the synthesis of all standard C/C++ types, including exact-width integer
types

• Recommended to define the data types for all variables in a common header file, which
can be included in all source file

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 4

TA
C

-H
E
P

 2
0

2
5

Arbitrary precision

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 5

C/C++ data types Bit-width

(unsigned) char 4

(unsigned) short 8

(unsigned) int 16

(unsigned) long 32

(unsigned) long long 64

float 32

double 64

IntN_t N=8/16/32/64

Creating hardware, it is useful to use more accurate bit-widths

For ex: a case in which the input to a filter is 4-bit and the yielded

results requires a maximum of 10-bits

short input

int output

ap_int<4> input
ap_int<10> output

TA
C

-H
E
P

 2
0

2
5

Arbitrary precision

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 6

C/C++ data types Bit-width

(unsigned) char 4

(unsigned) short 8

(unsigned) int 16

(unsigned) long 32

(unsigned) long long 64

float 32

double 64

IntN_t N=8/16/32/64

Using standard C data types for hardware

design results in unnecessary hardware costs.

Operations can use more LUTs and registers

than needed for the required accuracy, and

delays might even exceed the clock cycle,

requiring more cycles to compute the result

TA
C

-H
E
P

 2
0

2
5

Simple arithmetic example

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 7

TA
C

-H
E
P

 2
0

2
5

Data-Type (w/o Arbitrary precision)

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 8

TA
C

-H
E
P

 2
0

2
5

Data-Type (w/o Arbitrary precision)

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 9

TA
C

-H
E
P

 2
0

2
5

Precise data types

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 10

TA
C

-H
E
P

 2
0

2
5

Data-Type (w/ Arbitrary precision)

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 11

TA
C

-H
E
P

 2
0

2
5

Data-Type (w/ Arbitrary precision)

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 12

TA
C

-H
E
P
 2

0
2

5

HLS Pragmas

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 13

TA
C

-H
E
P

 2
0

2
5

HLS Pragmas

HLS pragmas are compiler directives used in HLS tools (like Xilinx
Vitis/Vivado HLS or Intel HLS compiler) to optimize hardware
implementation while writing high-level C, C++ or SystemC code

HLS tool provides pragmas that can be used to

➢Optimize the design

➢Reduce latency

➢Improve throughput performance

➢Reduce area and device resource usage

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 14

TA
C

-H
E
P

 2
0

2
5

List of Available Pragmas

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 15

TA
C

-H
E
P

 2
0

2
5

Pragma HLS interface

• C/C++ based design: Input & outputs are performed in zero time through
function arguments

• RTL design: same I/O operations must be performed through a port in the design
interface & typically operates using a specific I/O protocol

• INTERFACE pragma specifies how RTL ports are created from the function
definitions during interface synthesis

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 16

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-interface

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-interface

TA
C

-H
E
P

 2
0

2
5

Pragma HLS interface

• The INTERFACE pragma or directive is only supported for use on the top-level
function, and cannot be used for sub-functions of the HLS component

• HLS tool automatically determines the I/O protocol used by any sub-functions

• The arguments of the top-level function in an HLS component are synthesized into
interfaces and ports that group multiple signals to define the communication
protocol between the HLS component and elements external to the design

• The type of interfaces that the tool chooses depends on the data type and
direction of the parameters of the top-level function, the target flow for the HLS
component

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 17

TA
C

-H
E
P

 2
0

2
5

Interface

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 18

• The interface defines channels for data to flow into or out of the HLS design. Data

can flow from a variety of sources external to the kernel or IP, such as a host

application, an external camera or sensor, or from another kernel or IP implemented
on the AMD device

• The interface defines the port protocol that is used to control the flow of data
through the data channel, defining when the data is valid and can be read or can

be written

• The interface also defines the execution control scheme for the HLS design,

specifying the operation of the kernel or IP as pipelined or sequential

The interface defines three elements of the kernel:

TA
C

-H
E
P

 2
0

2
5

Control signals: ap_start

• This signal controls the block execution and must be asserted to logic 1 for

the design to begin operation.

• It should be held at logic 1 until the associated output handshake ap_ready

is asserted.

• Keep ap_start = 1 until ap_ready becomes 1 (meaning the task is done, and

new data can be processed)

• If ap_start is asserted low before ap_ready is high, the design might not have

read all input ports and might stall operation on the next input read

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 19

TA
C

-H
E
P

 2
0

2
5

Control Signal: ap_ready

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 20

• This output signal indicates when the design is ready for new inputs.

• The ap_ready signal is set to logic 1 when the design is ready to accept new
inputs, indicating that all input reads for this transaction have been
completed.

• If the design has no pipelined operations, new reads are not performed until
the next transaction starts.

• If ap_start = 0, the design will stop after finishing its current task.

TA
C

-H
E
P

 2
0

2
5

Control Signal: ap_done

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 21

• This signal indicates when the design has completed all operations in the
current transaction.

• ap_done = 1 means the design has finished processing all operations for the
current task.

• If there is an ap_return output, the value is now valid and ready to be read.

• Not all functions have a function return argument and hence not all RTL
designs have an ap_return port

TA
C

-H
E
P

 2
0

2
5

Control Signal: ap_idle

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 22

• This signal indicates if the design is operating or idle (no operation).

• What ap_idle = 1 means the design is not doing anything (idle), It
is waiting for ap_start = 1 to begin working

• This signal is asserted high when the design completes operation and no
further operations are performed.

TA
C

-H
E
P
 2

0
2

5

HLS Interface Example

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 23

TA
C

-H
E
P

 2
0

2
5

Interface Synthesis overview

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 24

• Two inputs n1 & n2
• A pointer sum that is read from and

written to
• A function return, the value of temp

Default interface settings will
synthesize the design into a RTL
block with ports as shown:

TA
C

-H
E
P

 2
0

2
5

Interface Synthesis overview
Three types of ports in the design:

• Clock & reset ports: ap_clk and ap_rst

• If the design takes more than 1 clock cycle to complete

• Block-level interface protocol:
• Added by default & control the block

• Independent to anyport-level protocol

• ap_start: Control when block can start processing data

• ap_ready: when ready to accept new input

• ap_idle: if the design is idle

• ap_done: completed operation

• Port level interface portocols: in1, in2, sum_i, sum_o, sum_o_ap_vld, and ap_return

• Final group of signals

• Created for each argument in the top-level function & the function return

• After block-level protocol has been used to start the operation of block, port level I/O
protocols are used to sequence data in and out of the block

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 25

TA
C

-H
E
P

 2
0

2
5

Port-Level Interface Protocol

• By default, input pass-by-value arguments and pointers are implemented as simple wire ports with
no associated handshaking signal

• Ex: Input ports are implemented without an I/O protocol, only a data port (data is held stable until it is
read)

• By default, output pointers are implemented with an associated output valid signal (sum_o_ap_vld)
to indicate when the output data is valid

• No I/O protocol associated with the output port, it is difficult to know when to read the data

• It is always a good idea to use an I/O protocol on an output

• Function arguments that are both read from & writes to are split into separate input & output ports

• Ex: sum is implemented as input port sum_i and output port sum_o with associated I/O protocol port
sum_o_ap_vld

• Function with a return value, an output port ap_return is implemented to provide the return value

• Completion of one transaction: the block-level protocols indicate the function is complete with the
ap_done signal.

• Also indicates the data on port ap_return is valid and can be read

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 26

TA
C

-H
E
P

 2
0

2
5

RTL Port timing

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 27

TA
C

-H
E
P

 2
0

2
5

RTL Port timing

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 28

• Design starts: ap_start is High

• ap_idle signal goes Low indicating design is

operating
• Input data is read at any CLK after the first

cycl.

• HLS schedules when the reads occur

• ap_ready signal is asserted high when all
inputs have been read

• When output sum is calculated, the

associated output handshake (sum_o_ap_vld)

indicates that the data is valid

• When the function completes, ap_done is
asserted. This also indicates that the data on

ap_return is valid

• Port ap_idle is High indicating design is waiting

start again

TA
C

-H
E
P

 2
0

2
5

Interface Synthesis I/O Protocols

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 29

The type of interfaces that are created by

interface synthesis depends on the type of

C/C++ argument

D: Default interface mode for each type

I: Input arguments, which are only read

O: Output arguments, which are only written to

I/O: Input/Output arguments, which are both

read and written

TA
C

-H
E
P

 2
0

2
5

Assignment #4

1.) Write a simple program doing arithmetic operations (+, -, *, /,
%) between elements of two arrays (N > 10) using arbitrary
precision and compare results with standard c/c++ data types
and using ap_(u)int<N>

Share the detail comparison report of the two and your
conclusion

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 30

TA
C

-H
E
P

 2
0

2
5

Reminder: Assignments

• Assignment-1 (13-02-2025)

• Assignment-2 (18-02-2025)

• Assignment-3 (27-02-2025)

• Assignment-4 (06-03-2025)

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 31

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

Submit in 2 weeks from date of assignment

Send via email: varun.sharma@cern.ch

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

TA
C

-H
E
P
 2

0
2

5

Questions?

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 32

Acknowledgements:

- https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

- ug871-vivado-high-level-synthesis-tutorial.pdf

https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas

TA
C

-H
E
P

 2
0

2
5

Reminder: HLS Setup

• ssh <username>@cmstrigger02-via-login -L5901:localhost:5901

• Or whatever :1 display number

• Sometimes you may need to run vncserver -localhost -geometry
1024x768 again to start new vnc server

• Connect to VNC server (remote desktop) client

• Open terminal

• source /opt/Xilinx/Vivado/2020.1/settings64.sh

• cd /scratch/`whoami`

• vivado_hls

• Source /opt/Xilinx/Vitis/2020.1/settings64.sh

• Cd /scratch/`whoami`

• vitis_hls

March 11, 2025TAC-HEP: GPU & FPGA training module - Varun Sharma 33

OR

TA
C

-H
E
P

 2
0

2
5

Jargons

March 11, 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 34

	Slide 1
	Slide 2: Content
	Slide 3: Data Types
	Slide 4: Data Types
	Slide 5: Arbitrary precision
	Slide 6: Arbitrary precision
	Slide 7: Simple arithmetic example
	Slide 8: Data-Type (w/o Arbitrary precision)
	Slide 9: Data-Type (w/o Arbitrary precision)
	Slide 10: Precise data types
	Slide 11: Data-Type (w/ Arbitrary precision)
	Slide 12: Data-Type (w/ Arbitrary precision)
	Slide 13: HLS Pragmas
	Slide 14: HLS Pragmas
	Slide 15: List of Available Pragmas
	Slide 16: Pragma HLS interface
	Slide 17: Pragma HLS interface
	Slide 18: Interface
	Slide 19: Control signals: ap_start
	Slide 20: Control Signal: ap_ready
	Slide 21: Control Signal: ap_done
	Slide 22: Control Signal: ap_idle
	Slide 23: HLS Interface Example
	Slide 24: Interface Synthesis overview
	Slide 25: Interface Synthesis overview
	Slide 26: Port-Level Interface Protocol
	Slide 27: RTL Port timing
	Slide 28: RTL Port timing
	Slide 29: Interface Synthesis I/O Protocols
	Slide 30: Assignment #4
	Slide 31: Reminder: Assignments
	Slide 32: Questions?
	Slide 33: Reminder: HLS Setup
	Slide 34: Jargons

