
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-4

Lecture-8: February 20th 2025

TA
C

-H
E
P

 2
0

2
5

Content

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 2

• Hardware Description Languages
• Verilog

TA
C

-H
E
P

 2
0

2
5

Basic mapping rules from C/C++ to RTL

RTL

Components

Modules

I/O Ports

Functional units

(adder, multiplier)

Wires or registers

Memory

Control logics

(Finite State Machine)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 3

TA
C

-H
E
P

 2
0

2
5

Basic mapping rules from C/C++ to RTL

C

Constructs

RTL

Components

Functions → Modules

Arguments → I/O Ports

Operators

(+, *)

→ Functional units

(adder, multiplier)

Scalars → Wires or registers

Arrays → Memory

Control flows → Control logics

(Finite State Machine)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 4

TA
C

-H
E
P

 2
0

2
5

Basic mapping rules from C/C++ to RTL

C

Constructs

RTL

Components

Functions → Modules

Arguments → I/O Ports

Operators

(+, *)

→ Functional units

(adder, multiplier)

Scalars → Wires or registers

Arrays → Memory

Control flows → Control logics

(Finite State Machine)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 5

Resource sharing: Only one instance

of Foo_B written to hardware

TA
C

-H
E
P

 2
0

2
5

Basic mapping rules from C/C++ to RTL

C

Constructs

RTL

Components

Functions → Modules

Arguments → I/O Ports

Operators

(+, *)

→ Functional units

(adder, multiplier)

Scalars → Wires or registers

Arrays → Memory

Control flows → Control logics

(Finite State Machine)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 6

TA
C

-H
E
P

 2
0

2
5

Basic mapping rules from C/C++ to RTL

C

Constructs

RTL

Components

Functions → Modules

Arguments → I/O Ports

Operators

(+, *)

→ Functional units

(adder, multiplier)

Scalars → Wires or registers

Arrays → Memory

Control flows → Control logics

(Finite State Machine)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 7

TA
C

-H
E
P

 2
0

2
5

Delay

• A delay can be explicitly specified in a continuous assignment
• assign #6 Ask = Quiet | Late;

• The delay specified #6 is the delay b/w RHS and LHS

• Eg: if a change of value occurs on Late at time 5, then the expression
on the RHS of the assignment is evaluated at time 5 and Ask will be
assigned a new value at time 11.

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 8

assign #4 cab = drm

TA
C

-H
E
P

 2
0

2
5

Verilog Statements

• Procedural:
• Evaluated sequentially
• initial block

• Model a block of activity that is executed at
the beginning

• always blocks
• Model a block of activity that is repeated

continuously

• Concurrent:
• Evaluated in parallel
• Order NOT important
• Continuous assigment

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 9

TA
C

-H
E
P

 2
0

2
5

Initial block

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 10

module test;

reg [3:0] a;

initial begin

a = 4'b0001; // Assign 0001 at time 0
#10 a = 4'b0010; // After 10 time units, assign 0010

#20 a = 4'b0100; // After another 20 time units, assign 0100

end

endmodule

• Executes only once, at time t = 0

• Mostly used in testbenches for simulation (not synthesized in hardware)

TA
C

-H
E
P

 2
0

2
5

Always Block

• All procedural statements must be within always (or initial) block

• Used for both combinational and sequential logic inference
• Model an activity that is repeated continuously

• @ can control the execution
• posedge or negedge: make sensitive to edge

• @* / @(*) are sensitive to any signal that may read in the statement
group

• Use “,”/ or multiple statements

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 11

TA
C

-H
E
P

 2
0

2
5

Always Block

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 12

TA
C

-H
E
P

 2
0

2
5

Blocking/Non-blocking assignment

Blocking assignment (= operator)

• The whole statement is done before control passes on to
the next statement.

• Similar to traditional programming languages

• Used in combinational logics

Non-blocking assignment (<= operator)

• Executes in parallel, meaning it does not update the value
immediately.

• The right-hand side (RHS) is evaluated at the start of the
time step, and all updates happen simultaneously at the
end.

• Used for synchronous (sequential) logic.

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 13

always @(posedge clk)

begin

 a = a + 1;

 b = a + 1;

end

always @(posedge clk)

begin

 a <= a + 1;

 b <= a + 1;

end

TA
C

-H
E
P

 2
0

2
5

Can we mix two?

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 14

always @(posedge clk) begin
a = b;
c <= a;

end

Mistake to avoid: Using blocking (=) for sequential logic can cause unexpected behavior

TA
C

-H
E
P

 2
0

2
5

Can we mix two?

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 15

always @(posedge clk) begin
a = b; // Immediate update
c <= a; // 'c' gets the OLD value of 'a'

end

Mistake to avoid: Using blocking (=) for sequential logic can cause unexpected behavior

TA
C

-H
E
P

 2
0

2
5

Can we mix two?

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 16

always @(posedge clk) begin
a = b; // Immediate update
c <= a; // 'c' gets the OLD value of 'a'

end

Mistake to avoid: Using blocking (=) for sequential logic can cause unexpected behavior

• Blocking (=): Executes immediately, used for combinational logic.

• Non-Blocking (<=): Executes in parallel, used for sequential logic (flip-flops).

• Use blocking (=) inside always @(*) and non-blocking (<=) inside always

@(posedge clk).

TA
C

-H
E
P

 2
0

2
5

Conditional statements (if … else)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 17

TA
C

-H
E
P

 2
0

2
5

Conditional statements (case)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 18

Case: used for switching between multiple selection

Casex treats Z and X as don’t care
Casez treats Z as don’t care

TA
C

-H
E
P

 2
0

2
5

Loop Statements (for)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 19

A for loop is used to replicate hardware logic in Verilog

• i.e., the loop will essentially be unrolled
• Again, everything (loop boundary) must be known at compile time!

TA
C

-H
E
P

 2
0

2
5

Task and function
• Task & Function serve the same purpose on Verilog as subroutines do in C

• Reusable blocks of code with procedural blocks

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 20

Task:
• Declare with task & endtask
• May have ZERO or more arguments of

type input, output, inout

• DO NOT return with a value, can pass
value through output & inout argument

• Used for complex operations
• Can contain delays, control or timing

statements
• Usage: I/O operations, sequential logics

Function:
• Declare with function & endfunction
• Must have at least one input

• Always return a single value
• CANNOT have output or inout arguments
• Used for simple computations
• Can’t have delays or timing controls
• Can call only functions
• Usage: Arithmetic operations

TA
C

-H
E
P

 2
0

2
5

Task and function

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 21

Task Function

TA
C

-H
E
P

 2
0

2
5

Generate Blocks

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 22

• Used to create repetitive or conditional hardware structures at compile time

• Advantageous in designing parameterized, scalable, and reusable
hardware.

• Provides the ability for the design to be built based on Verilog parameters

• Required the keywords generate – endgenerate
• Generate instantiations can be

• Module instantiations
• Continuous assignments
• Initial / always blocks

TA
C

-H
E
P

 2
0

2
5

Generate Blocks

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 23

module generate_example (

 input wire clk,
 input wire [3:0] d,

 output reg [3:0] q
);
 genvar i; // Generate loop variable

 generate

 for (i = 0; i < 4; i = i + 1) begin : gen_ff // Label: gen_ff
 always @(posedge clk)
 q[i] <= d[i]; // Create 4 flip-flops

 end
 endgenerate

endmodule

TA
C

-H
E
P

 2
0

2
5

Conditional Instantiation

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 24

module conditional_generate (

 input wire clk, d,
 output reg q

);
 parameter USE_FF = 1; // Set to 0 to disable flip-flop

 generate
 if (USE_FF) begin

 always @(posedge clk)
 q <= d; // Flip-flop instantiated if USE_FF = 1
 end

 endgenerate
endmodule

TA
C

-H
E
P

 2
0

2
5

Finite State Machines

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 25

TA
C

-H
E
P

 2
0

2
5

FSM: Robot Examples
• The robot can realize when it runs into something

• For some basic object avoidance, the robot backs up when it hits something
then turns right if the left switch is pressed or turns right if the right switch is
pressed

• When the robot hasn't hit anything, it will just drive forward

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 26

TA
C

-H
E
P

 2
0

2
5

Finite State Machine

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 27

TA
C

-H
E
P

 2
0

2
5

Some Good Practices

• Value assignments
• For correct simulation results, use non-blocking assignments within

sequential Verilog always blocks

• DO NOT mix blocking non blocking assignments

• DO NOT make assignment to same variable from more than one always
block

• Case statements
• If your if statement contain more than three conditions, consider using case

statement to improve the parallelism of your design and clarity of code

• An incomplete case statement results in the creating of a latch

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 28

TA
C

-H
E
P

 2
0

2
5

Some Good Practices

• Constant Definitions
• Use the Verilog `define statement to define global constants
• Keep the definitions in a separate file

• Guidelines for Identifiers
• Ensure that the signal name conveys the meaning of the signal or

the value of a variable without being verbose

• Never use high-impedance values in a conditional
expression

• All loops should have finite pre-defined lenght

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 29

TA
C

-H
E
P

 2
0

2
5

Verilog Playground

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 30

https://edaplayground.com/

A free, cloud-based tool for running
and sharing SystemVerilog, VHDL,
Verilog, and UVM simulations online.

TA
C

-H
E
P

 2
0

2
5

Reminder: Assignments

• Assignment-1 (13-02-2025)

• Assignment-2 (18-02-2025)

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 31

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

Submit in 2 weeks from date of assignment

Send via email: varun.sharma@cern.ch

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

TA
C

-H
E
P

 2
0

2
5

Connecting to cmstrigger02

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 32

• Connect to cmstrigger02 machine:

• ssh -X -Y <username>@cmstrigger02.hep.wisc.edu

• OR

• First sign-in to 'login' machine & then connect to 'cmstrigger02' machine - All of you
should have access

• ssh -X -Y <username>@login.hep.wisc.edu

• ssh cmstrigger02

• mkdir /nfs_scratch/`whoami` (If directory exist, go to next bullet)

• cd /nfs_scratch/`whoami`

TA
C

-H
E
P
 2

0
2

5

Questions?

20 February 2025TAC-HEP: FPGA training module - Varun Sharma 33

Acknowledgements:

- Some of these slides are from Isobel Ojalvo

TA
C

-H
E
P

 2
0

2
5

Jargons

20 February 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: FPGA training module - Varun Sharma 34

	Slide 1
	Slide 2: Content
	Slide 3: Basic mapping rules from C/C++ to RTL
	Slide 4: Basic mapping rules from C/C++ to RTL
	Slide 5: Basic mapping rules from C/C++ to RTL
	Slide 6: Basic mapping rules from C/C++ to RTL
	Slide 7: Basic mapping rules from C/C++ to RTL
	Slide 8: Delay
	Slide 9: Verilog Statements
	Slide 10: Initial block
	Slide 11: Always Block
	Slide 12: Always Block
	Slide 13: Blocking/Non-blocking assignment
	Slide 14: Can we mix two?
	Slide 15: Can we mix two?
	Slide 16: Can we mix two?
	Slide 17: Conditional statements (if … else)
	Slide 18: Conditional statements (case)
	Slide 19: Loop Statements (for)
	Slide 20: Task and function
	Slide 21: Task and function
	Slide 22: Generate Blocks
	Slide 23: Generate Blocks
	Slide 24: Conditional Instantiation
	Slide 25: Finite State Machines
	Slide 26: FSM: Robot Examples
	Slide 27: Finite State Machine
	Slide 28: Some Good Practices
	Slide 29: Some Good Practices
	Slide 30: Verilog Playground
	Slide 31: Reminder: Assignments
	Slide 32: Connecting to cmstrigger02
	Slide 33: Questions?
	Slide 34: Jargons

