
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-4

Lecture-7: February 18th 2025

TA
C

-H
E
P

 2
0

2
5

Content

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 2

• Hardware Description Languages
• Verilog

TA
C

-H
E
P

 2
0

2
5

Connecting to cmstrigger02

March 28, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

• Connect to cmstrigger02 machine:

• ssh -X -Y <username>@cmstrigger02.hep.wisc.edu

• OR

• First sign-in to 'login' machine & then connect to 'cmstrigger02' machine - All of you
should have access

• ssh -X -Y <username>@login.hep.wisc.edu

• ssh cmstrigger02

• mkdir /nfs_scratch/`whoami` (If directory exist, go to next bullet)

• cd /nfs_scratch/`whoami`

TA
C

-H
E
P
 2

0
2

5

Verilog HDL

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 4

TA
C

-H
E
P

 2
0

2
5

Verilog HDL

Initially was created to simplify design simulation & verification

 Verilog: Verification + Logic

Increasing logic complexity ➜ added support for synthesis

• Used to model a digital system at many levels of abstraction

• Complexity can range from a simple gate to a complete
electronic digital system

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 5

TA
C

-H
E
P

 2
0

2
5

Difference from programming languages

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 6

Verilog C/C++

Procedural block

Variable declaration

TA
C

-H
E
P

 2
0

2
5

Difference from programming languages

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 7

Verilog C/C++
For Statement

TA
C

-H
E
P

 2
0

2
5

Types of modeling

Behavioral (High Level)

• Describes what the circuit should do,
rather than how it is implemented

• Assignment statements, control
statements

Structural (Gate Level)

• Describes the structure of the hardware
components

• Interconnections of logic gates &
modules

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 8

TA
C

-H
E
P

 2
0

2
5

Behavioral vs Structural

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 9

module mux4x1 (input [1:0] sel, input [3:0] d,

output reg y);

always @(*) begin

case (sel)

2'b00: y = d[0];
2'b01: y = d[1];

2'b10: y = d[2];

2'b11: y = d[3];

default: y = 0;

endcase
end

endmodule

module half_adder (input a, input b,

output sum, output carry);

 xor(sum, a, b); // Sum = A ⊕ B

 and(carry, a, b); // Carry = A & B

endmodule

Structural modeling: Half AdderBehavioral modeling: 4-to-1 MUX

TA
C

-H
E
P

 2
0

2
5

Terminology

• Register Transfer Level (RTL): A type of behavioral modeling, for the
purpose of synthesis
• Describes how data moves between registers using combinational logics

• Synthesis: Translating HDL to a circuit (hardware logic) & then
optimizing the represented

• RTL Synthesis: Translating an RTL model of hardware into an optimized
technology-specific gate level implementation using synthesis tools like
Xilinx Vivado

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 10

TA
C

-H
E
P

 2
0

2
5

Comparison RTL & RTL Synthesis

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 11

module and_gate (input A, input B, output reg Y);

always @(*) begin

Y = A & B; // RTL level logic

end

endmodule

RTL code (before synthesis)

module and_gate (input A, input B, output Y);

 and U1 (Y, A, B); // Replaced with actual AND

gate

endmodule

Synthesized Gate-Level Output

TA
C

-H
E
P

 2
0

2
5

Simulation and Synthesis

The two major purposes of HDLs are logic simulation and
synthesis

• Not all of the Verilog commands can be synthesized into
hardware

• During simulation: inputs are applied to a module, and the
outputs are checked to verify that module operates correctly

• During synthesis: textual description of a module is
transformed into logic gates

HDL code is divided into synthesizable modules and a test
bench

• Synthesizable: describes hardware

• Test Bench: Checks whether the output result is correct (only
simulation)

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 12

TA
C

-H
E
P

 2
0

2
5

Synthesis

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 13

TA
C

-H
E
P
 2

0
2

5

Verilog Syntax

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 14

TA
C

-H
E
P

 2
0

2
5

Logical Values

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 15

A bit can have any of these values:

• 0 representing logic low (false)

• 1 representing logic high (true)

• X representing unknown value, 0, 1, or Z

• Z representing high impedance for tri-state (unconnected inputs are

set to Z)

X & Z are case in-sensitive

TA
C

-H
E
P

 2
0

2
5

Lexical elements

• Case sensitive: keywords are lower case

• Semicolons (;) are line terminators

• Comments:
• One line //…..

• Mutli-line comments start with /* and end with */

• System task & functions start with a dollar sign
• Example: $display, $time, $signed

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 16

TA
C

-H
E
P

 2
0

2
5

Lexical elements

• Variable names have to start with an alphabetic
character or underscore (_) followed by
alphanumeric or underscore characters

• Escaped identifiers (\)
• Permit non alphanumeric characters in Verilog names

• The escaped name includes all the characters
following the backslash until the first white space
character

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 17

Count

COUNT //distinct from Count

_R2_D2

R56_68

FIVE$

\7400

\.*.$

\{*****}

\OutGate // same as OutGate

TA
C

-H
E
P

 2
0

2
5

Compile Directives
• When compilers, remains in effect through the entire compilation

process (which could span multiple files) until a different compiler
directive specifies otherwise

• Certain identifiers that start with ` (backquote) character are
compiler directives

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 18

• `define, `undef

• `ifdef, `else, `endif

• `default_nettype

• `include

• `resetall
• `timescale

• `unconnected_drive, `nounconected_drive

• `celldefine, `endcelldefine

TA
C

-H
E
P

 2
0

2
5

Number Representation

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 19

<size>

• number of bits (optional)

<base format>
• It is a single character ‘ followed by one of the following characters

b, d, o and h, which stand for binary, decimal, octal and hex,

respectively.

<number>
• Contains digits which are legal for the <base format>
• Underscore (_) can be used for readability

TA
C

-H
E
P

 2
0

2
5

Number Representation

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 20

TA
C

-H
E
P

 2
0

2
5

Basic components of Verilog

• Module

• Ports

• Data Types

• Operators

• Always Block

• Initial & Test bench

• Control Statements

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 21

TA
C

-H
E
P

 2
0

2
5

Verilog Design

A digital system is built using hierarchical modules,

• At each level of hierarchy, different modules are
connected to work together

Hierarchy:

• Design: multiple modules

• Module can contain sub-modules, forming a hierarchy

• Top module integrates all the sub-modules

Same level of hierarchy

• Modules can be connected and interact without one
being inside another

• These modules communicate through ports

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 22

TOP

TA
C

-H
E
P

 2
0

2
5

Module

Basic building block in Verilog, similar to a function in programming

• Defines the circuit & its behaviour

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 23

module HalfAdder (A, B, Sum, Carry);

 input A, B;

 output Sum, Carry;

 assign #2 Sum = A ^ B;
 assign #5 Carry = A & B;

endmodule

module <module name> #(<param list>) (<port list>)

 <Declarations>:

 reg, wire, parameters

 input, output, inout

 <Instantiations>
 <Data flow statements>

 <Behavioral blocks>

 <task and functions>

endmodule

TA
C

-H
E
P

 2
0

2
5

Module Ports

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 24

TA
C

-H
E
P

 2
0

2
5

Ports

• Input (input): Takes external signals

• Output (output): Produces results

• Bidirectional (inout): Can act as input and output

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 25

module full_adder (input a, input b, input cin, output

sum, output cout);

 assign sum = a ^ b ^ cin; // XOR for sum

 assign cout = (a & b) | (b & cin) | (a & cin); //

Carry out
endmodule

TA
C

-H
E
P

 2
0

2
5

Data Types

• Nets (wire)
• Represents a physical connection b/w structural elements.
• `wire’ is used for combinational logic

• Continously reflects the value assigned to it (default z)

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 26

• Registers (reg)
• Represents an abstract data storage element
• Assigned values only within an always statement or an initial statement

• Value is saved from one assignment to the next (default x)

wire y;

assign y = a & b; // y changes automatically when a or b changes

reg q;

always @(posedge clk)

 q <= d; // q changes only on the clock edge

TA
C

-H
E
P

 2
0

2
5

Vector and Arrays

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 27

Verilog vectors: known as BUS in hardware

• <data type> [left range : right range] <Variable name>

Single element that is n-bits wide

• reg [0:7] A, B; //Two 8-bit reg with MSB as the 0th bit
• wire [3:0] Data; //4-bit wide wire MSB as the 4th bit

Vector part select (access)

• A[5] // bit # 5 of vector A

• Data[2:0] // Three LSB of vector Data

Verilog arrays: range follows the name

• <datatype> <array name> [<array indices>]

• reg B [15:0]; // array of 16 reg elements

• Reg [0:3] B [0:63]: //B is an array of sixty four 4-bit registers

Array of vectors: model the memory

• <data type> [<vector indices>]<array name>[<array indices>]

• reg [15:0] mem [1023:0]; // array of vectors

TA
C

-H
E
P

 2
0

2
5

More about wires

• Slicing
• Wire [31:0] bus; //declare 4 byte bus

• bus[7:0]; //lowest byte of bus

• Concatenation
• {bus[7:0], bus[15:8], bus[23:16], bus[31:24]}

• Replication
• {8{4’b1010}}; // replicate binary value 4’b1010 8 times

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 28

TA
C

-H
E
P

 2
0

2
5

More above memory

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 29

On FPGA, memory maps to BRAM

Everything must be decided at compile time – your hardware cannot be changed

while running!

• Cannot add one more piece of memory after the circuit is built!

TA
C

-H
E
P

 2
0

2
5

Operators

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 30

wire result;
assign result = (a > b) ? a : b; // Assigns max(a, b) to result

TA
C

-H
E
P

 2
0

2
5

Always Block

Used for

• Combinational logic (always @(*))

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 31

always @(*) begin

 sum = a + b; // Executes when a or b changes

end

• Sequential logic

always @(posedge clk) begin

 q <= d; // q updates at every positive clock edge

end

TA
C

-H
E
P

 2
0

2
5

Blocking vs non-blocking

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 32

Blocking VS non-blocking assignments

• = blocking
• <= Non blocking, used only in always block

Blocking
Statement inside always block

are executed sequentially

Non-Blocking
Statement inside always block are

executed in parallel

always @(*) begin

 b = a;

 c = b;

 d = b;

end

always @(posedge clk) begin

 b <= a;

 c <= b;

 d <= b;

end

always @(*) begin

 a = b;

 b = c;

 c = a;

end

TA
C

-H
E
P

 2
0

2
5

Intial & TestBench

Initial: Executes once, used in test benches for simulation

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 33

module testbench;

 reg a, b;

 wire y;

 and_gate uut (a, b, y); // Instantiate AND gate

 initial begin

 a = 0; b = 0; #10;

 a = 0; b = 1; #10;

 a = 1; b = 0; #10;
 a = 1; b = 1; #10;

 $finish;

 end

endmodule

TA
C

-H
E
P

 2
0

2
5

Control statements

• if-else, case, for, while, repeat for behavioral modeling

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 34

always @(*) begin

 if (a == 1)

 y = b;

 else

 y = c;

end

always @(*) begin

 case (sel)

 2'b00: y = a;

 2'b01: y = b;

 2'b10: y = c;

 default: y = d;

 endcase

end

Example: if-else Example: case

TA
C

-H
E
P

 2
0

2
5

Verilog Playground

May 2, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 35

https://edaplayground.com/

A free, cloud-based tool for running
and sharing SystemVerilog, VHDL,
Verilog, and UVM simulations online.

TA
C

-H
E
P

 2
0

2
5

Assignments

• Assignment-1 (13-02-2025)

• Assignment-2 (18-02-2025)

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 36

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

Submit in 2 weeks from date of assignment

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

TA
C

-H
E
P
 2

0
2

5

Questions?

18 February 2025TAC-HEP: FPGA training module - Varun Sharma 37

Acknowledgements:

- Some of these slides are from Isobel Ojalvo

TA
C

-H
E
P

 2
0

2
5

Jargons

18 February 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: FPGA training module - Varun Sharma 38

	Slide 1
	Slide 2: Content
	Slide 3: Connecting to cmstrigger02
	Slide 4: Verilog HDL
	Slide 5: Verilog HDL
	Slide 6: Difference from programming languages
	Slide 7: Difference from programming languages
	Slide 8: Types of modeling
	Slide 9: Behavioral vs Structural
	Slide 10: Terminology
	Slide 11: Comparison RTL & RTL Synthesis
	Slide 12: Simulation and Synthesis
	Slide 13: Synthesis
	Slide 14: Verilog Syntax
	Slide 15: Logical Values
	Slide 16: Lexical elements
	Slide 17: Lexical elements
	Slide 18: Compile Directives
	Slide 19: Number Representation
	Slide 20: Number Representation
	Slide 21: Basic components of Verilog
	Slide 22: Verilog Design
	Slide 23: Module
	Slide 24: Module Ports
	Slide 25: Ports
	Slide 26: Data Types
	Slide 27: Vector and Arrays
	Slide 28: More about wires
	Slide 29: More above memory
	Slide 30: Operators
	Slide 31: Always Block
	Slide 32: Blocking vs non-blocking
	Slide 33: Intial & TestBench
	Slide 34: Control statements
	Slide 35: Verilog Playground
	Slide 36: Assignments
	Slide 37: Questions?
	Slide 38: Jargons

