
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-3

Lecture-5: February 11th 2025

TA
C

-H
E
P

 2
0

2
5

Content

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 2

• FPGA Processing
• Scheduling, Pipelining, DataFlow

• Clock Frequency, Latency, Pipelining

TA
C

-H
E
P

 2
0

2
5

Look-up Tables (LUTs)

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 3

Configuration bits are memory

elements that store the truth table of
the function implemented by the LUT

(AND in this case)

These bits store the output value for

every possible combination of input

Number of configuration bits in a LUT
depends on the # of inputs => 2N

TA
C

-H
E
P

 2
0

2
5

Other Storage Elements: URAM

• Ultra RAM blocks are dual-port, synchronous 288Kb RAM with a fixed
configuration

• Available in Xilinx’s UltraScale+ devices

• Eight times more storage capacity than the BRAMs

• URAMs generally have higher latency access compared to BRAMs

• Usage: Large buffers, Video processing …

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 4

TA
C

-H
E
P
 2

0
2

5

FPGA Parallelism

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 5

TA
C

-H
E
P

 2
0

2
5

Program execution on a Processor
A processor executes a program as a sequence of instructions

• Translated into useful computation for a software application

• Compiler transforms the C/C++ into assemble language

• The assembly code defines the addition operation to compute the value of z in
terms of the internal registers of a processor

• The complete assembly program to compute the value of z is as follows:

• Even a simple operation, such as the addition of two values, results in multiple
assembly instructions

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 6

TA
C

-H
E
P

 2
0

2
5

Program execution on a Processor

• Depending on the location of a and b, the LD operations take a different
number of clock cycles to complete:

• Processor cache : few 10 clock cycles

• DDR memory: ~100/~1000 clock cycles

• Hard drives: even longer

• Software engineers spend a lot of time restructuring their algorithms

• Increase the spatial locality of data in memory to increase the cache hit
rate and decrease the processor time spent per instruction

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 7

TA
C

-H
E
P

 2
0

2
5

Program execution on FPGA

FPGA is an inherently parallel processing fabric capable of implementing any logical
and arithmetic function that can run on a processor

• Main difference: Vivado HLS compiler

• Transforms software descriptions into RTL (Register-Transfer level),
• Not hindered by the restrictions of a cache and a unified memory space

• Computation of z is compiled by Vivado HLS into several LUTs required to achieve
the size of the output operand

• E.g.: In C code, variable a, b, and z are defined with the short data type (16-bit
data container)

• Variables gets implemented as 16 LUTs by Vivado HLS

General rule: 1 LUT is equivalent to 1 bit of computation

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 8

TA
C

-H
E
P

 2
0

2
5

Program execution on FPGA

• LUTs used for the computation of z are exclusive to this operation ONLY.

• Unlike a processor, where all computations share the same ALU

• FPGA implementation instantiates independent sets of LUTs for each computation in
the software algorithm

• FPGA differs from processor: memory architecture & cost of memory access

• FPGA implementation, the Vivado HLS compiler arranges memories into multiple
storage banks as close as possible to the point of use in the operation

• Results in an instantaneous memory bandwidth, exceeding the capabilities of a
processor

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 9

TA
C

-H
E
P

 2
0

2
5

Execution steps on FPGA

• Vivado HLS compiler exercises the capabilities of the FPGA fabric using
following processes:

oScheduling and binding

oPipelining

oDataflow

Transparent to the user, these processes are integral stages of the software
compilation process that extract the best possible circuit-level implementation
of the software application

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 10

TA
C

-H
E
P

 2
0

2
5

Scheduling

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 11

Process of identifying the data and control dependencies between different operations

• To Determine which operation occur during each clock cycle based on:

• Length of the clock cycle or clock frequency

• Time it takes for the operation to complete, as defined by the target device

• User-specified optimization directives

• Vivado HLS analyzes dependencies between adjacent operations as well as across time

• Group operations to execute in the same clock cycle and set up the hardware to allow
the overlap of function calls

• Overlap of function call executions removes the processor restriction that requires the
current function call to fully complete before the next function call to the same set of
operations can begin -- Pipelining

TA
C

-H
E
P

 2
0

2
5

Scheduling

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 12

Process of identifying the data and control dependencies between different operations

• To Determine which operation occur during each clock cycle based on:

• Length of the clock cycle or clock frequency

• Time it takes for the operation to complete, as defined by the target device

• User-specified optimization directives

• If the clock period is longer or a faster FPGA is targeted, more operations are
completed within a single clock cycle, and all operations might complete in one
clock cycle.

• Conversely, if the clock period is shorter or a slower FPGA is targeted, high-level
synthesis automatically schedules the operations over more clock cycles, and
some operations might need to be implemented as multicycle resources

TA
C

-H
E
P

 2
0

2
5

Binding

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 13

• Determines which hardware resource implements each scheduled
operation

• To implement the optimal solution, high-level synthesis uses information
about the target device

Example

TA
C

-H
E
P

 2
0

2
5

Scheduling & Binding

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 14

Scheduling

First cycle:

• Reads b, a, and b data ports

Second cycle:

• Reads data port c

• Generates output y

TA
C

-H
E
P

 2
0

2
5

Scheduling & Binding

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 15

Binding

First cycle:

Multiplication & the first addition

Second cycle:

Second addition & output generation

Internal register storing a variable

Scheduling

First cycle:

• Reads b, a, and b data ports

Second cycle:

• Reads data port c

• Generates output y

TA
C

-H
E
P

 2
0

2
5

Scheduling

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 16

In this example, the arguments are simple

data ports but in hardware implementation

they are I/O ports.

The input data ports are all 8-bits wide (char).

Output data port is 32-bit wide as function

return is a 32-bit int data type

Optimised for the ideal balance of high-
performance and efficient implementation

TA
C

-H
E
P

 2
0

2
5

Pipelining

Technique to avoid data dependencies and increase the level of parallelism

• Preserving the original functionality, required circuit is divided into a chain of
independent stages

• All stages in the chain run in parallel on the same clock cycle

• The only difference is the source of data for each stage

• Each stage in the computation receives its data values from the result computed
by the preceding stage during the previous clock cycle

• Vivado HLS compiler instantiates one multiplier and two adder blocks for above
example

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 17

TA
C

-H
E
P

 2
0

2
5

Pipelining

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 18

C implementation

Pipelined

implementation

TA
C

-H
E
P

 2
0

2
5

Pipelining

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 19

• Boxes: registers implemented by FF blocks

• Each box column counted as single clock

cycle

• Result in 3 clock cycles.

• Addition of registers, leads to separated

compute sections for each block

• Multiplier & two adders can run in parallel

and reduce latency

TA
C

-H
E
P

 2
0

2
5

Pipelining

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 20

• Both sections of the datapath run in parallel

• Essentially computing the y and y’ in parallel

• y’ result of the next execution

• First computation of y: pipeline fill time = 3

CLK

• After this initial computation, a new value of

y is available at the output on every clock

cycle, because the computation pipeline

contains overlapped data sets for the

current and subsequent y computations

TA
C

-H
E
P

 2
0

2
5

Pipelining

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 21

• Raw data: dark gray,

• Semi-computed data: white

• Final data: light gray

All exist simultaneously & each

stage result is captured in its own

set of registers

Although the latency for such

computation is in multiple cycles,

there is new result with every

cycle i-2 i-2 i-2

i-1 i-1 i-1

i i i

TA
C

-H
E
P

 2
0

2
5

Dataflow

• Similar to pipelining but parallelism at coarse-grain level

• Parallel execution of functions within a single program
• By evaluating the interactions between different functions of a program

based on their inputs and outputs

• Case-1: Independent (simplest)

• Separate resources for different functions and run the blocks independently

• Case-2: Dependent (complex)

• One function provides result for another function (consumer-producer
scenario)

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 22

TA
C

-H
E
P

 2
0

2
5

Dataflow
Consumer-producer scenario:

• Producer creates a complete data set before the consumer can start its operation

• Parallelism by instantiating a pair of BRAM memories arranged as memory banks
ping and pong

• Each function can access only one memory bank, ping or pong, for the duration
of a function call

• Guarantees functional correctness but limits parallelism

• Consumer can start working with partial results from the producer

• Both functions are connected through the use of a FIFO memory circuit

• FIFO act as queue, provides data-level synchronization between the modules

• both hardware modules are executing during any time of functional call

• Exception: consumer module waits for some data to be available from the
producer before beginning computation (Initiation interval – II)

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 23

TA
C

-H
E
P

 2
0

2
5

Another Example

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 24

TA
C

-H
E
P

 2
0

2
5

Another Example: Implementation

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 25

The FSM starts in the state C0

On the next clock, it enters state
C1, then state C2, and then
state C3. It returns to state C1
(and C2, C3)

A total of three times before
returning to state C0

TA
C

-H
E
P

 2
0

2
5

Latency & Initiation Interval

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 26

TA
C

-H
E
P
 2

0
2

5

Questions?

12 February 2025TAC-HEP: FPGA training module - Varun Sharma 35

TA
C

-H
E
P

 2
0

2
5

Jargons

12 February 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: FPGA training module - Varun Sharma 36

	Slide 1
	Slide 2: Content
	Slide 3: Look-up Tables (LUTs)
	Slide 4: Other Storage Elements: URAM
	Slide 5: FPGA Parallelism
	Slide 6: Program execution on a Processor
	Slide 7: Program execution on a Processor
	Slide 8: Program execution on FPGA
	Slide 9: Program execution on FPGA
	Slide 10: Execution steps on FPGA
	Slide 11: Scheduling
	Slide 12: Scheduling
	Slide 13: Binding
	Slide 14: Scheduling & Binding
	Slide 15: Scheduling & Binding
	Slide 16: Scheduling
	Slide 17: Pipelining
	Slide 18: Pipelining
	Slide 19: Pipelining
	Slide 20: Pipelining
	Slide 21: Pipelining
	Slide 22: Dataflow
	Slide 23: Dataflow
	Slide 24: Another Example
	Slide 25: Another Example: Implementation
	Slide 26: Latency & Initiation Interval
	Slide 35: Questions?
	Slide 36: Jargons

