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ESO Far...

= Motivation

= Comparison: FPGAs/ASICs/GPU/CPU
= Domain specific Accelerators

Today:

« LHC, CMS Experiment
« Level-1 Trigger

« FPGASIn HEP
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What do we want?

Scientific
discoveries

Journal
Publications A
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LHC, CMS Experiment
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Large Hadron Collider

TAC-HEP 2025

pp collisions @ Vs = 13.6 TeV
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Large Hadron Collider

The LHC accelerates bunches of billions of protons (or —— RIS
ions) from 450 GeV injection energy from SPS to 6.8 , e
TeV and collides them at 13.6 TeV centre-of-mass

energy

LHC circumference is 27km and the minimal distance s,
between bunches is 25ns*c s ous_nuee_ueo

o Revolution frequency of LHC is 11.24 kHz o5

RF Full Detuning phase/delay info

o Bunch crossing rate (ZeroBias rate) depends on
number of bunches in the machine

o e.g.For 2380 colliding bunches (2023)
« ZeroBiasrate =26.8 MHz

Filling scheme: 25ns_2352b_2340_2004_2133_108bpi_24inj
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https://gitlab.cern.ch/lhc-injection-scheme/injection-schemes/raw/master/25ns_2352b_2340_2004_2133_108bpi_24inj.json
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CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERT
Overall diameter :15.0 m Pixel (100x150 pm) ~1m? ~66M channels

Overall length  :28.7m Microstrips (80x180 ym) ~200m>[~9.6M channels |
Magnetic field :3.8T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

IMUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? |~137 ,000 channels |

FORWARD CALORIMETER
- Steel + Quartz fibres ++2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystalsl

HADRON CALORIMETER (HCA
smmnum: Brass+ Plastic scintillator |~7 ,000 channels
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E FPGAs/ASICs in CMS (ATLAS)

Front End Electronics (Detector Readout): Combination of ASICs+FPGA

» ASICs: Custom designed chips process signals from various detectors
« Calorimeters: Measure energy deposits of particles
 Muon Chambers: Detect muons
» Tracker: Processes signal from silicon sensors

 FPGAs: Data handling and interfacing with DAQ

Data Acquisition (DAQ) and readout

* FPGAs: Handle high-speed data transmission, data formatting and
interfacing with DAQ computers

« ASICs: Converting detector signals into digital data

Trigger System:
 FPGAs: Used extensively in the level-1 frigger to make ultra fast decisions (us)
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E FPGAS/ASICs In other experiments

Neutrino Experiments:

* ASICs: Used in photodetectors (like PMTs, SIPMs) to convert light signals
from neutrino interactions intfo digital data

* FPGASs: Used to filter & select neutrino events from background noise

« Eg: DUNE: FPGAs in the DAQ system — Process vast amounts of data from the
liquid argon detectors in real time

Dark matier experiments:

ASICs: Designed for ultra-low-noise signal processing in cryogenic
enviroments

FPGAs: Real-time waveform analysis & friggering

Eg: LUX-ZEPLIN (LZ), FPGAs process PMT signal in real fime to differentiate
b/w potential DM interactions & bbkg events
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LHC Data flow...

* AT an input rate of 40MHz

. It is impossible to record data at 80 PB/s
 Each raw event being 1-2MB

Solution = Be Selective = Add a trigger

Nl 11 ]
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Trigger concept

DAQ Trigger

Start the data identity the

iInteresting

acquisition
“ Process

The role of the trigger is fo make the online selection of particle collisions
potentially containing interesting physics

 Whatis ‘Interesting’?:
» Define what is signal and what is background

 What is the final affordable rate of the DAQ system?
* Define the maximum allowed rate

 How fast the selection must be?
» Define the maximum allowed processing time
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A Simple Trigger System

* Data Input: signals from fronft-end electronics

i
4 b — N
Vo N J \ - >
Charge cltoge  Bigger, Voltage

F{se lvF'ulse F:tlse
| From Front-End ” Pre-amplifier I Amplifier \ DlscrlmanTor

Signal

The simplest trigger: apply a threshold
« Look at the signal
« Put a threshold as low as possible
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Level-1 trigger receives data with

coarse granularity from

« Calorimeters (ECAL, HCAL, HF)
 Muon systems (CSC, DT, RPC, GEM)

Collision data are buffered locally for < 4us
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L1 Trigger is implemented in hardware

Uses field programmable gate arrays (FPGAs)

Operates synchronously to the LHC clock (40 MHz)

\ |
csc RPC DT ! HO HBHE HF ECAL
TPs Hits TPs Il 1ps Ps Ps Ps
|
v v :
e |
Muon ) |
Port Card Link
— Board }
,,,,,, | .
TT | Trigger
VAN I P _I_ Y VY
! rimifives (7
CPPF TwinMux . or H|TS Ce}ll_o'rig:rter
rig
— | e —)
j h\_l |
4 A4 A4 1 A4
s ) ()
Endcap Overlap Barrel | Layer 2
rack Track Track 1 Calorimeter
Finder Finder Finder 1 Trigger
-~ e
[ | |
! A4
I e\
! DeMux
|
1

TAC-HEP: FPGA training module - Varun Sharma

4 February 2025 15



CMS Level-1 Trigger

2| (=] [ To make decision in us
l J . .
W - We have parallel/Pipelined
i i

system

backward loops)

= - Feed Forward Algorithms (no
=) i - Highly distributed

Muon Trigger

— - Pardllelism in FPGA

- Pardllelism in Logic
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CMS Trigger System

Two level triggering m

« Level - 1 Trigger (L1T) ALICE
« Custom hardware using FPGAS ATLAS 3
40 MHz > 100 kHz LHCb 3
« High Level Trigger (HLT) CMS 2

« Computing farm
* 100 kHz >~ TkHz

Level-1 Level-2 Level-3

wlele

Question: Why different levels@
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CMS Trigger Architecture

~40 MHz Detectors
Digitizers

QM ) ——1 Front end pipelines
us 40 MHz synchrounous
—1 Readout buffers
~100kHz B T
|
N Readout networks
1 Terabit's bandwidth
‘:
HLT —1{ Event filter
sec TeraFlops processor lams

—b
Mass storage
Petafiops archive
~1 kHz
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Data path split here:
Coarse (L1), raw (DAQ)

Data sitting in buffers,
waiting for decision from L1

L1 latency sets the depth of
buffers (and $$)
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GPU Acceleration @ CMS HLT

21% processing time reduction

The pie-chart shows the distribution of CPU time in different instances
of CMSSW modules (outermost ring), their corresponding C++ class
(one level inner), grouped by physics object or detector (innermost
ring). The empty slice indicates the time spent outside of the
individual algorithms.

CPU CPU + GPU

The time spent in the conversion of GPU-friendly Structure of Arrays
data formats to legacy data formats is indicated by “Conversion” in
the extra internal ring.

The timing is measured on pileup 50 events from Run2018D on a full
HLT node (2x Intel Skylake Gold 6130) with HT enabled, running 16
jobs in parallel, with 4 threads each - equipped with an NVIDIA T4
GPU.

351.7ms

Using the GPU to accelerate:

e pixel local reconstruction, track and vertex reconstruction
HCAL local reco (MAHI)
e ECAL unpacking and local reconstruction (multifit)

reduces the CPU usage by 21%, increasing the throughput by 26%.
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All set to do physics analyses
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Lets discuss about FPGAs

FPGA: Field Programmable Gate Array



Xilinx Field Programmable Gate Array

TAC-HEP 2025

Gates [edit]
» 1987: 9,000 gates, Xilinx!®!
+ 1992: 600,000, Naval Surface Warfare Department!’!
« Early 2000s: millions!®!
Xilinx: All Programmable + 2013: 50 milion, Xilinx!'?

Software Defined, Hardware Optimized Market size [ed]

« 1985: First commercial FPGA : Xilinx XC2064/Il
You may know Xilinx because we invented the FPGA. Or maybe you know + 1987: $14 million!®!
us because we turned the semiconductor world upside down and created
the fabless model. With over 3500 patents and more than 60 industry
firsts, we continue to pioneer new programmable technology putting our
customers first. Today Xilinx's portfolio combines All Programmable * 2010 estimates: $2.75 billion!'!
devices in the categories of FPGAs, SoCs, and 3DICs, as well as All * 2013: $5.4 billion!'4!

« 2005: $1.9 billion['®!

Programming models, including software-defined development « 2020 estimate: $9.8 billion('*
environments. Our products are enabling smart, connected, and « 2030 estimate: $23.34 billion!15!
differentiated applications driven by 5G Wireless, Embedded Vision,

Industrial loT, and Cloud Computing. Design starts [edit]

A design start is a new custom design for implementation on an FPGA.

« 2005: 80,000!°!
« 2008: 90,000!"7!

First FPGA invented by Xilinx Inc. in 1985

Source: https://en.wikipedia.org/wiki/Field-
programmable_gate_array
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FPGAS:

« Programmable hardware whose sub-component
configuration can be changed even after fabrication: - Em Em .
“field-programmable”

« Has 2D array of logic gates in its architecture: “Gate
Array”

[]
[]
[]
[]

[]
[]
[]
[]
-

[]
[]
[]
[]

« Asilicon ‘breadboard’ of configurable logic gates,
memories, fransceivers, Digital Signal Processors (DSPs),
registers (flip flops)
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E FPGA Architecture
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E FPGA Architecture

« Contains thousands of fundamental elements called configurable logic -
blocks (CLBs) surrounded by a system of programmable interconnects,
called a fabric, that routes signals between CLBs.

 The interconnects can readily be reprogrammed, allowing an FPGA to
accommodate changes 1o a design or even support a new application
during the lifetime of the part.

« |Input/output (I/O) blocks interface between the FPGA and external
devices.

« Stores its configuration information in a re-programmable medium such as
static RAM (SRAM) or flash memory
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E FPGA Components

The basic structure of an FPGA is composed of:
* Look-up table (LUT)

* Flip-Flop (FF)

* Slices and CLBs

* Block Memory (BRAM)
« DSP Blocks

* Interconnect and routing resources: Wires & Input/Output (1/0) pads
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Xilinx Multi-Node Product Portfolio Offering

45nm 28nm 20nm 16nm
SPARTANW VIRTEX” VI Rggcgg VI Rjgcg
75
KINTEX. KINTEX” KINTEX
CU rre n.l.ly UltraSCALE UltraSCALE+

HL-LHC

Product Tables and Product Selection Gt

Deployed

UltraScale+

7 Series UltraScale

Cost-Optimized Portfolio

Spartan-7 Spartan-6 Spartan-7 Artix-7 Kintex UltraScale  Virtex UltraScale Kintex UltraScale+ Virtex UltraScale+

Artix-7 Zynq—700Q Kintex-

Decide wisely w iMA fo use as per your needs
. T

Max Logic Cells (K) 478 1,955

Max Memory (Mb) 4.2 13 34 68

Max DSP Slices 160 740 1,920 3,600
Max Transceiver Speed (Gb/s) 6.6 125 28.05
Max /0 Pins 400 500 500 1,200
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Speed grade:
maximum
propagation
delay for critical
paths in the FPGA
fabric or I/O
operations
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Calorimeter Trigger Processor(CTP7 - left), and Master Processor (MP7 - right)

« CTP7 (Layer-1) - mTCA Single Virtex 7 FPGA, 67 optical inputs, 48 outputs, 12 RX/TX backplane
* Virtex 7 allows 10 Gb/s link speed on 3 CXP(36 TX & 36 RX) and 4 MiniPODs (31 RX & 12 TX)

« ZYNQ processor running Xilinx PetaLinux for service tasks, including virtual JTAG cable

 MP7 (Layer-2) - mTCA Single Virtex 7 FPGA, up to 72 input & output links
 Virtex 7 has 72 input and output links at 10 Gb/s
* Dual 72 or 144MB QDR RAM clocked at 500 MHz
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Questions?
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