
Spring 2025

Domain Specific
Accelerators
Prof. Isabel Ojalvo

1/30/25 Domain Specific AcceleratorsSpring 2025 2

What? Why? How? Future?

1/30/25 Domain Specific AcceleratorsSpring 2025 3

What? Why? How? Future?

Domain Specific Accelerators1/30/25Spring 2025

Specialize hardware does most of the work, but it is mostly invisible

Cellphones
• Software on ARM cores

• High-complexity, low compute work

• Accelerators do the heavy lifting

• MODEMs

• CODECs

• Camera Image Processing

• DNNs

• Graphics

Others
• Neural Network Processors

• Processors for Software-Defined Networks (SDNs)

Specialized Hardware is Everywhere

Graphic Processing Units
(GPUs)

• Rasterizer

• Texture filter

• Compositing

• Compression/
Decompression

• Tensor computations

4

Domain Specific Accelerators1/30/25Spring 2025

• Domain Specific Accelerator

• Achieve higher efficiency by tailoring the architecture to

characteristics of the domain

• Not one application, but a domain of applications

• Different from strict ASIC since still runs software

• Specialized hardware? Yes or No?

Specialized Hardware is Everywhere

5

Intel's 12th Gen
“Alder Lake” 10nm

Desktop CPU

In your desktop?

NVIDIA RTX A6000
Workstation Graphics

Card

Google’s Tensor
Processing Unit

(TPU)

Xilinx Alveo U280 Data
Center Accelerator Card

1/30/25 Domain Specific AcceleratorsSpring 2025 6

What? Why? How? Future?

Domain Specific Accelerators1/30/25Spring 2025

Inefficiency of General-Purpose (GP) computing

• Typical energy overhead for every 10pJ arithmetic operations

• 70pJ on instruction supply

• 47pJ on data supply

Only 59% of the instructions are arithmetic

Source of Computation Inefficiencies

7

6%

24%
28%

42%
70%

Embedded Processor Energy
Breakdown

Arithmetic Clock and control
Data supply Instruction supply

[M.	Horowitz,	"1.1	Compu3ng's	energy	problem	(and	
what	we	can	do	about	it),"	IEEE	ISSCC,	2014,	pp.	10-14]

Source:	Dally	et	al.	Efficient	Embedded	Computing,	IEEE’08

Domain Specific Accelerators1/30/25Spring 2025

Inefficiency of High-Level languages

• Better interpretability, lower efficiency

Source of Computation Inefficiencies

8
[Leiserson,	C.	et	al.	There's	plenty	of	room	at	the	top.	Science,	June	2020,	Vol	368(6495)]

Domain Specific Accelerators1/30/25Spring 2025

There exists a big gap between

• Modern languages: emphasizing productivity

• Traditional languages: emphasizing performance

Productivity vs. Efficiency

9

E.g., Verilog

Traditional approaches: low productivity,
high efficiency (e.g., assembly)

Modern languages: high productivity,
low efficiency (e.g., Python)

Domain Specific Accelerators1/30/25Spring 2025

For humans, remarkable
advancement of civilization
via specialization

• Not through scaling –

number of brain neurons and
their firing rate did not
change significantly

For computers

• Modern System-on-Chips

(SoC) integrate a rich set of
specialized accelerators

• Speed up critical tasks

• Reduce power consumption
and cost

Solutions to Computation Inefficiency

10

Specialization: Advance of Civilization

Domain Specific Accelerators1/30/25Spring 2025

Hardware-centric approach: Domain-Specific Accelerators (DSAs)

Software-centric approach: Domain-Specific Languages (DSLs)

• Make vector, dense/sparse matrix operations explicit

• Help compiler to map operations to the processor (general? DSA?)
efficiently

• DSL Examples

• Matlab: for operating on matrices

• TensorFlow: dataflow language for programming DNNs

• P4: for programming SDNs

• Halide: for image processing specifying high-level transformations

Best combination: DSL + DSA + Automation

Solutions of Computation Inefficiency?

11

[J.	Rexford,	“p4:	Programming	Protocol	Independent	Pack	Processors”	
h?ps://www.cs.princeton.edu/~jrex/papers/P4-ccr14.pdf

https://www.cs.princeton.edu/~jrex/papers/P4-ccr14.pdf

Domain Specific Accelerators1/30/25Spring 2025

Pressing demand to efficiently accelerate a growing array
of datacenter & embedded workloads

• Multicore performance scaling significantly slowed

• Machine learning spread + big data + sophisticated algorithms
+ …

Best of Times for Specialized computing

12

Intel's 12th Gen “Alder Lake” 10nm
Desktop CPU

NVIDIA RTX A6000 Workstation
Graphics Card (in my lab)

Google’s Tensor Processing UnitXilinx Alveo U280 Data Center
Accelerator Card

Efficiency (high performance)Flexibility (easy programming)

Domain Specific Accelerators1/30/25Spring 2025

Pressing demand to efficiently accelerate a growing array of
datacenter & embedded workloads

• Multicore performance scaling significantly slowed

• Machine learning spread + big data + sophisticated algorithms + …

But – also worst of times? Conventional hardware design
practice requires extensive hand-coding in RTL and manual
tuning

Implementation of Specialized Computing

13

Platform Normalized	
Speed-Up

Normalized	
Performance/Watt

Development	Time	
in	Days

FPGA* 545:1 1090:1 60

GPU 50:1 21:1 3

GPP 1:1 1:1 1

Verilog is hard…

Domain Specific Accelerators1/30/25Spring 2025

Gap can be largely narrowed by DSL + Automation

Productivity vs. Efficiency

14

E.g., Verilog
High-level DSL

Automation

Domain Specific Accelerators1/30/25Spring 2025

Another genomic algorithm
(Banded Smith-Waterman)
example

• In CUDA for the GPU in one day

• 25x improvement in efficiency
over the CPU

• On an FPGA in two months of
RTL design and performance
tuning

• 4x the efficiency of the GPU

• RTL into an ASIC gives

• 16x the efficiency of the FPGA

but with significant nonrecurring
costs and lack of flexibility

Examples of DSAs how good are they?

15

[W.	J.	Dally,	et	al.,	Domain-Specific	Hardware	Accelerators.	
Communications	of	the	ACM,	63(7),	pp.	48-57,	July	2020.]

[Turakhia,	Y.,	et	al.	“Darwin-WGA:	A	co-processor	
provides	increased	sensi3vity	in	whole	genome	
alignments	with	high	speedup.	HPCA	(2019)]

Deep learning and genomics

Domain Specific Accelerators1/30/25Spring 2025

Domaine Specific Accelerators

16

What? Why? How? Future?

Domain Specific Accelerators1/30/25Spring 2025

Principles of DSAs

17

Reduction of
Overhead

Specialized
OperationsParallelism

Efficient
Memory
System

DSA

Domain Specific Accelerators1/30/25Spring 2025

Principles of DSAs

18

Reduction of
Overhead

Specialized
OperationsParallelism

Efficient
Memory
System

DSA

Domain Specific Accelerators1/30/25Spring 2025

Specialized operations result in orders of magnitude
efficiency and moderate speedup

• William Dally, Keynote, “The Future of Computing: Domain-

Specific Accelerators”, MICRO52

• An example: Smith-Waterman algorithm for gene sequence

alignment

Specialized Operations and Data Types

19

On	14nm	CPU	(x86) On	40nm	DSA
35	ALU	ops,	15	load/store

37	cycles 1	cycle	(37x	speedup)

81	nJ
(mostly	for	fetching,	

decoding,	and	reordering	
instructions)

3.1	pJ	(26,000x	efficiency)
(0.3	pJ	for	computing	logic,	
remainder	for	memory)

Turakhia,	Y.,	Bejerano,	G.	and	Dally,	W.J.,	Darwin:	A	Genomics	
Co-processor	Provides	up	to	15,000	X	Acceleration	on	Long	
Read	Assembly.	ASPLOS,	2018

Domain Specific Accelerators1/30/25Spring 2025

From moderate speedup to magnificent speedup?

Specialization → Efficiency → Parallelization → Speedup

• Specialization → Efficiency

• 37x speedup, 26,000x efficiency, 270,000x for logic

• Efficiency → Parallelization

• Parallelism 64 PE arrays x 64 PEs per array, 4,096x total

• Parallelization → Speedup

• 37 (Specialization) x 4,034 (Parallelism) = 150,000x total

Specialized Operations and Data Types

20

Domain Specific Accelerators1/30/25Spring 2025

Principles of DSAs

21

Reduction of
Overhead

Specialized
OperationsParallelism

Efficient
Memory
System

DSA

Domain Specific Accelerators1/30/25Spring 2025

High degrees of parallelism provide
gains in performance

• Many levels of parallelism

• Multiply-accumulate (MAC) level

• Processing element (PE) level (in
some literature PE == MAC)

• Function level

• …

Parallel units must exploit locality

• Make very few global memory

references; otherwise, performance
will be memory-bound

• Make very few cross-PE data
movement (ideally none)

Parallelism

22

Memory

PE

PE

PE

PE

PE

PE

Accelerator

Bottleneck

Bottleneck: In many operations, the code
needs to wait for all PE operations to be

performed before it can continue.

Domain Specific Accelerators1/30/25Spring 2025

Principles of DSAs

23

Reduction of
Overhead

Specialized
OperationsParallelism

Efficient
Memory
System

DSA

Domain Specific Accelerators1/30/25Spring 2025

Quote from William Dally: Accelerator Design is Guided by
Cost

• Arithmetic is free (particularly low-precision)

• Memory is expensive

• Communication is prohibitively expensive

Local and Optimized Memory

24

Domain Specific Accelerators1/30/25Spring 2025

Quote from William Dally: Accelerator Design is Guided by
Cost

• Arithmetic is free (particularly low-precision)

• Memory is expensive

• Communication is prohibitively expensive

Local and Optimized Memory

25

You,	Y.,	et	al.	Fast	LSTM	by	
dynamic	decomposition	on	
cloud	and	distributed	
systems.	Knowledge	and	
Information	Systems,	2020

Domain Specific Accelerators1/30/25Spring 2025

Storing key data structures in many small, local memories and try to reuse
them

• Multiple levels of data buffers

• Very high memory bandwidth

• Low cost and energy

Data compression

• Increase the effective size of a local memory

• Increase the effective bandwidth of a memory interface

• “Quantization” – usually requires algorithm support (will discuss in a later lecture)

Compressed storage

• E.g., sparse matrix

• Data reuse

• Once stored in local memory from global (or lower-level) memory, use it as many
times as possible

•…

Local and Optimized Memory

26

Domain Specific Accelerators1/30/25Spring 2025

Principles of DSAs

27

Reduction of
Overhead

Specialized
OperationsParallelism

Efficient
Memory
System

DSA

Domain Specific Accelerators1/30/25Spring 2025

Specializing hardware reduces the overhead of program interpretation

A simple in-order processor spends over 90% of its energy on overhead

• Instruction fetch, instruction decode, data supply, and control

A modern out-of-order processor spends over 99.9% of its energy on overhead

• Adding costs for branch prediction, speculation, register renaming, and instruction

scheduling

• Example

• 32-bit integer add @ 28 nm CMOS → 68 fJ

• Integer add on 28 nm ARM A-15 → 250 pJ

• 4000× the energy of the add itself!

Reduced Overhead

28

[Dally, et al. “Efficient embedded computing”, Computer 2008]

[Vasilakis, E. “An instruction level energy characterization of ARM processors”, Tech. Rep. FORTHICS/TR-450, 2015]

Domain Specific Accelerators1/30/25Spring 2025

Overhead reduction in DSAs

• Most adds do not need full 32-bit precision

• No instructions to be fetched → no instructions fetch and decode energy

• No speculation → no work lost due to mis-speculation

• Most data is supplied directly from dedicated registers → no energy is
required to read from a cache or from a large, multi-ported register file

When logic is “free”, memory and communication dominates!

Reduced Overhead

29

[Turakhia, Y. et al. ,
“Darwin: A genomics
co-processor provides
up to 15,000×
acceleration on long
read assembly”.
ASPLOS 2018]

Domain Specific Accelerators1/30/25Spring 2025

Need to Accelerate the Whole Problem

• Amdahl’s Law!

• Watch for critical path and the components
that are “hidden” by others

Simple parallelism often beats a “better”
algorithm

• Algorithm-accelerator co-design is needed

• Is the algorithm hardware-friendly?
Parallelism-friendly? Memory-friendly?

•Algorithms must be memory-optimized

• Minimize global memory accesses

• Keep local memory footprint small

•

Other Principles

30

Domain Specific Accelerators1/30/25Spring 2025

High Level Synthesis (HLS) is essentially a compiler
(automation tool) to design new domain-specific
accelerators (DSAs)

Strictly, DSA is different from ASIC since it still requires
software

A Bigger Picture of HLS, DSA, and Compiler

31

High-level programming
languages Domani Specific Architectures

(DSAs)

Compiler: to map programs to fixed DSAs

HLS: to design some new DSAs

Domain Specific Accelerators1/30/25Spring 2025

General-purpose computing is inefficient

Domain-Specific Accelerators (DSAs) are the future

• Specialization → efficiency

• Parallelism → speedup

• Co-design → is the algorithm DSA-friendly?

Memory and communication dominate

• Minimize global memory access

• Minimize memory footprint – new algorithms, sparsity, compression

• Lots of small, fast on-chip memories

FPGAs as accelerator platforms

• Highly flexible → highly specialized

• Highly parallelizable

• High local memory bandwidth

HLS as an easy-to-use compilation tool

Summary

32

1/30/25 Domain Specific AcceleratorsSpring 2025

Logic Gates

33

Domain Specific Accelerators1/30/25Spring 2025

Digital logic is the building block of
digital systems

• FPGAs rely on digital logic

• Computer hardware relies on digital logic

• Every calculation, operation, pixel

render relies on digital logic!!

• A circuit can be designed by drawing
logic gates that are then mapped onto
general-purpose gates on the FPGA

• Also can be connected using Verilog or

other HDL

Logic gates have inputs and outputs

• Inputs are high or low

• low is close to 0V

• high is over half the supply voltage

• typically 1.8, 3.3 or 5 V

Simplest Logic gate “NOT” shown to the
right

Logic Gates

34

NOT gate

NOT gate truth table

Domain Specific Accelerators1/30/25Spring 2025

“AND” gates

• If either input is low then the

output is low

• similar to C++ && operation

“OR” gates

• If either input is high then the

output is High

AND and OR

35

Domain Specific Accelerators1/30/25Spring 2025

“NAND” gates

• AND gate with inverted output 

“NOR” gates

• OR gate with inverted output

“XOR” gates

• One or the other but NOT

both

NAND and NOR

36

Domain Specific Accelerators1/30/25Spring 2025

Making an AND gate with NOR gates

37

Domain Specific Accelerators1/30/25Spring 2025

First remember the binary
representation of decimal
numbers

If we want to add 2 bits
then we need a third bit to
represent the maximum
value

• 001+001 = 010

Adding with Logic

38

Domain Specific Accelerators1/30/25Spring 2025

If we want to add 2 bits
then we need a third bit to
represent the maximum
value

• 001+001 = 010

Adding with Logic

39

Domain Specific Accelerators1/30/25Spring 2025

On your own:

Read about Flip Flops, Shift Registers and Counters

Complete homework problems

That’s all for today!

40

